Skip to main content
Top

2017 | OriginalPaper | Chapter

Prediction and Planning Methods of Bipedal Dynamic Locomotion Over Very Rough Terrains

Authors : Luis Sentis, Benito R. Fernandez, Michael Slovich

Published in: Robotics Research

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although the problem of dynamic locomotion in very rough terrain is critical to the advancement of various areas in robotics and health devices, little progress has been made on generalizing gait behavior with arbitrary paths. Here, we report that perturbation theory, a set of approximation schemes that has roots in celestial mechanics and non-linear dynamical systems, can be adapted to predict the behavior of non closed-form integrable state-space trajectories of a robot’s center of mass, given its arbitrary contact state and center of mass (CoM) geometric path. Given an arbitrary geometric path of the CoM and known step locations, we use perturbation theory to determine phase curves of CoM behavior. We determine step transitions as the points of intersection between adjacent phase curves. To discover intersection points, we fit polynomials to the phase curves of neighboring steps and solve their differential roots. The resulting multi-step phase diagram is the locomotion plan suited to drive the behavior of a robot or device maneuvering in the rough terrain. We provide two main contributions to legged locomotion: (1) predicting CoM state-space behavior for arbitrary paths by means of numerical integration, and (2) finding step transitions by locating common intersection points between neighboring phase curves. Because these points are continuous in phase they correspond to the desired contact switching policy. We validate our results on a human-size avatar navigating in a very rough environment and compare its behavior to a human subject maneuvering through the same terrain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Harada, S. Kajita, K. Kaneko, H. Hirukawa, Zmp analysis for arm/leg coordination, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, October 2003, pp. 75–81 K. Harada, S. Kajita, K. Kaneko, H. Hirukawa, Zmp analysis for arm/leg coordination, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, October 2003, pp. 75–81
2.
go back to reference S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, H. Hirukawa, Biped walking pattern generator allowing auxiliary zmp control, in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, October 2006, pp. 2993–2999 S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, H. Hirukawa, Biped walking pattern generator allowing auxiliary zmp control, in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, October 2006, pp. 2993–2999
3.
go back to reference M. Raibert, Legged Robots that Balance (MIT Press, Cambridge, 1986)MATH M. Raibert, Legged Robots that Balance (MIT Press, Cambridge, 1986)MATH
4.
go back to reference T. Bretl, S. Lall, Testing static equilibrium for legged robots. IEEE Trans. Rob. 24(4), 794–807 (2008)CrossRef T. Bretl, S. Lall, Testing static equilibrium for legged robots. IEEE Trans. Rob. 24(4), 794–807 (2008)CrossRef
5.
go back to reference C. Collette, A. Micaelli, C. Andriot, P. Lemerle, Robust balance optimization control of humanoid robots with multiple non coplanar grasps and frictional contacts, in Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, USA, May 2008 C. Collette, A. Micaelli, C. Andriot, P. Lemerle, Robust balance optimization control of humanoid robots with multiple non coplanar grasps and frictional contacts, in Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, USA, May 2008
6.
go back to reference J. Pratt, R. Tedrake, Velocity-based stability margins for fast bipedal walking, in Fast Motions in Biomechanics and Robotics, ed. by M. Diehl, K. Mombaur, vol. 340, pp. 299–324 (2006) J. Pratt, R. Tedrake, Velocity-based stability margins for fast bipedal walking, in Fast Motions in Biomechanics and Robotics, ed. by M. Diehl, K. Mombaur, vol. 340, pp. 299–324 (2006)
7.
go back to reference T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–68 (1990)CrossRef T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–68 (1990)CrossRef
8.
go back to reference A. Goswami, B. Espiau, A. Kermane, Limit cycles and their stability in a passive bipedal gait, in Proceedings of the IEEE International Conference on Robotics and Automation, April 1996, pp. 246–251 A. Goswami, B. Espiau, A. Kermane, Limit cycles and their stability in a passive bipedal gait, in Proceedings of the IEEE International Conference on Robotics and Automation, April 1996, pp. 246–251
9.
go back to reference K. Mombaur, H. Bock, J. Schloder, R. Longman, Self-stabilizing somersaults. IEEE Trans. Robot. 21(6), 1148–1157 (2005) K. Mombaur, H. Bock, J. Schloder, R. Longman, Self-stabilizing somersaults. IEEE Trans. Robot. 21(6), 1148–1157 (2005)
10.
go back to reference A. Ruina, J. Bertram, M. Srinivasan, A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005)MathSciNetCrossRef A. Ruina, J. Bertram, M. Srinivasan, A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005)MathSciNetCrossRef
11.
go back to reference T. Takuma, K. Hosoda, Controlling the walking period of a pneumatic muscle walker. Int. J. Robot. Res. 25(9), 861–866 (2006)CrossRef T. Takuma, K. Hosoda, Controlling the walking period of a pneumatic muscle walker. Int. J. Robot. Res. 25(9), 861–866 (2006)CrossRef
12.
go back to reference E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, B. Morris, Feebdack Control of Dynamic Bipedal Robot Locomotion (CRC Press, 2007) E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, B. Morris, Feebdack Control of Dynamic Bipedal Robot Locomotion (CRC Press, 2007)
13.
go back to reference B. Stephens, C. Atkeson, Modeling and control of periodic humanoid balance using the linear biped model, in 9th IEEE RAS International Conference on Humanoid Robots, 2009. Humanoids 2009, December 2009, pp. 379–384 B. Stephens, C. Atkeson, Modeling and control of periodic humanoid balance using the linear biped model, in 9th IEEE RAS International Conference on Humanoid Robots, 2009. Humanoids 2009, December 2009, pp. 379–384
14.
go back to reference J. Rummel, Y. Blum, A. Seyfarth, Robust and efficient walking with spring-like legs. Bioinspir. Biomimet. 5(4), 046004 (2010)CrossRef J. Rummel, Y. Blum, A. Seyfarth, Robust and efficient walking with spring-like legs. Bioinspir. Biomimet. 5(4), 046004 (2010)CrossRef
15.
go back to reference M. Wisse, A. Schwab, R. van der Linde, F. van der Helm, How to keep from falling forward: elementary swing leg action for passive dynamic walkers. IEEE Trans. Robot. 21(3), 393–401 (2005)CrossRef M. Wisse, A. Schwab, R. van der Linde, F. van der Helm, How to keep from falling forward: elementary swing leg action for passive dynamic walkers. IEEE Trans. Robot. 21(3), 393–401 (2005)CrossRef
16.
go back to reference K. Byl, R. Tedrake, Metastable walking machines. Int. J. Robot. Res. 28(8), 1040–1064 (2009)CrossRef K. Byl, R. Tedrake, Metastable walking machines. Int. J. Robot. Res. 28(8), 1040–1064 (2009)CrossRef
17.
go back to reference I.R. Manchester, U. Mettin, F. Iida, R. Tedrake, Stable dynamic walking over uneven terrain. Int. J. Robot. Res. 30(3), 265–279 (2011)CrossRefMATH I.R. Manchester, U. Mettin, F. Iida, R. Tedrake, Stable dynamic walking over uneven terrain. Int. J. Robot. Res. 30(3), 265–279 (2011)CrossRefMATH
18.
go back to reference M. Spong, J. Holm, D. Lee, Passivity-based control of bipedal locomotion. IEEE Robot. Autom. Mag. 14(2), 30–40 (2007)CrossRef M. Spong, J. Holm, D. Lee, Passivity-based control of bipedal locomotion. IEEE Robot. Autom. Mag. 14(2), 30–40 (2007)CrossRef
19.
go back to reference M. Zucker, J. Bagnell, C. Atkeson, J. Kuffner, An optimization approach to rough terrain locomotion, in 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010, pp. 3589–3595 M. Zucker, J. Bagnell, C. Atkeson, J. Kuffner, An optimization approach to rough terrain locomotion, in 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010, pp. 3589–3595
20.
go back to reference K. Hauser, T. Bretl, K. Harada, J. Latombe, Using motion primitives in probabilistic sample-based planning for humanoid robots, in Workshop on Algorithmic Foundations of Robotic (WAFR), New York, USA, July 2006 K. Hauser, T. Bretl, K. Harada, J. Latombe, Using motion primitives in probabilistic sample-based planning for humanoid robots, in Workshop on Algorithmic Foundations of Robotic (WAFR), New York, USA, July 2006
21.
go back to reference K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple agents, in Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, May 2011 K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple agents, in Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, May 2011
22.
go back to reference L. Sentis, B. Fernandez, Com state space cascading manifolds for planning dynamic locomotion in very rough terrain, in Proceedings of Dynamic Walking 2011, Jena, Germany, July 2011 L. Sentis, B. Fernandez, Com state space cascading manifolds for planning dynamic locomotion in very rough terrain, in Proceedings of Dynamic Walking 2011, Jena, Germany, July 2011
23.
go back to reference L. Sentis, J. Park, O. Khatib, Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Trans. Rob. 26(3), 483–501 (2010)CrossRef L. Sentis, J. Park, O. Khatib, Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Trans. Rob. 26(3), 483–501 (2010)CrossRef
Metadata
Title
Prediction and Planning Methods of Bipedal Dynamic Locomotion Over Very Rough Terrains
Authors
Luis Sentis
Benito R. Fernandez
Michael Slovich
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-29363-9_34