Skip to main content
Top
Published in: Strength of Materials 1/2018

03-04-2018

Prediction of a High Temperature Bonding Condition at the Interface for the Hot-Rolled Stainless Steel Clad Plate on Rolling

Authors: B. Guan, B. Y. Chen, Y. Zang, Q. Qin

Published in: Strength of Materials | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The stainless steel-carbon steel clad plate was investigated using the theoretical analysis of various factors influencing the high-temperature interfacial bonding during its rolling. Phenomenological prediction analysis model of interfacial bonding strength at high temperature which considers the vacuum depth, rolling temperature, and rolling reduction, was established. The specific thermal simulation experiment was designed. The bonding strengths of carbon steel and stainless steel at 1000~1200°C and compression degree of 10~30% were measured by a Gleeble 3500 thermal simulator, as a result, the interfacial bonding ratio was obtained. The results show that the bonding ratio is 0.5–0.65 at the experimental temperature and compression degree. The numerical simulation method was used to analyze the influence of the compression degree of the first pass for a 2000 × 1500 × 100 mm stainless steel clad plate under the interfacial bonding conditions. The simulation results show that the optimum compression degree of the first pass is 15–20% at the rolling temperature of 1200°C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference M. Yang, X. Zuo, M. Zhao, and J. Wang, “Research progress of manufacturing technology for stainless steel clad plate hot,” Work. Technol., 20, 027 (2012). M. Yang, X. Zuo, M. Zhao, and J. Wang, “Research progress of manufacturing technology for stainless steel clad plate hot,” Work. Technol., 20, 027 (2012).
3.
go back to reference Y. H. Yang, G. Y. Lin, D. D. Chen, et al., “Fabrication of Al–Cu laminated composites by diffusion rolling procedure,” Mater. Sci. Technol., 30, No. 8, 973–976 (2014).CrossRef Y. H. Yang, G. Y. Lin, D. D. Chen, et al., “Fabrication of Al–Cu laminated composites by diffusion rolling procedure,” Mater. Sci. Technol., 30, No. 8, 973–976 (2014).CrossRef
4.
go back to reference R. Abedi and A. Akbarzadeh, “Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding,” Mater. Design, 88, 880–888 (2015).CrossRef R. Abedi and A. Akbarzadeh, “Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding,” Mater. Design, 88, 880–888 (2015).CrossRef
5.
go back to reference H. Kim, G. T. Kang, and S. I. Hong, “Thermomechanical processing and roll bonding of tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite,” Metall. Mater. Trans. A, 47, No. 5, 2267–2276 (2016).CrossRef H. Kim, G. T. Kang, and S. I. Hong, “Thermomechanical processing and roll bonding of tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite,” Metall. Mater. Trans. A, 47, No. 5, 2267–2276 (2016).CrossRef
6.
go back to reference M. M. Hoseini-Athar and B. Tolaminejad, “Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process,” Met. Mater. Int., 22, No. 4, 670–680 (2016).CrossRef M. M. Hoseini-Athar and B. Tolaminejad, “Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process,” Met. Mater. Int., 22, No. 4, 670–680 (2016).CrossRef
7.
go back to reference Z. J. Wang, L. Zhai, M. Ma, et al., “Microstructure, texture and mechanical properties of Al/Al laminated composites fabricated by hot-rolling,” Mater. Sci. Eng. A, 644, 194–203 (2015).CrossRef Z. J. Wang, L. Zhai, M. Ma, et al., “Microstructure, texture and mechanical properties of Al/Al laminated composites fabricated by hot-rolling,” Mater. Sci. Eng. A, 644, 194–203 (2015).CrossRef
8.
go back to reference M. Ma, P. Huo, W. C. Liu, et al., “Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding,” Mater. Sci. Eng. A, 636, 301–310 (2015).CrossRef M. Ma, P. Huo, W. C. Liu, et al., “Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding,” Mater. Sci. Eng. A, 636, 301–310 (2015).CrossRef
9.
go back to reference W. N. Kim and I. H. Sun, “Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite,” Mater. Sci. Eng. A, 651, 976–986 (2015).CrossRef W. N. Kim and I. H. Sun, “Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite,” Mater. Sci. Eng. A, 651, 976–986 (2015).CrossRef
10.
go back to reference J. S. Kim, J. Park, K. S. Lee, et al., “Correlation between bonding strength and mechanical properties in Mg/Al two-ply clad sheet,” Met. Mater. Int., 22, No. 5, 771–780 (2016).CrossRef J. S. Kim, J. Park, K. S. Lee, et al., “Correlation between bonding strength and mechanical properties in Mg/Al two-ply clad sheet,” Met. Mater. Int., 22, No. 5, 771–780 (2016).CrossRef
11.
go back to reference X. B. Li, G. Y. Zu, and P. Wang, “High strain rate tensile performance and microstructural evolution of Al/Cu laminated composite under dynamic loading,” Mater. Sci. Eng. A, 612, No. 33, 89–95 (2014).CrossRef X. B. Li, G. Y. Zu, and P. Wang, “High strain rate tensile performance and microstructural evolution of Al/Cu laminated composite under dynamic loading,” Mater. Sci. Eng. A, 612, No. 33, 89–95 (2014).CrossRef
12.
go back to reference Y. Zhang, S. Ji, G. Scamans, and Z. Fan, “Interfacial characterisation of overcasting a cast Al-Si-Mg (A356) alloy on a wrought Al-Mg-Si (AA6060) alloy,” J. Mater. Process. Technol., 243, 197–204 (2017).CrossRef Y. Zhang, S. Ji, G. Scamans, and Z. Fan, “Interfacial characterisation of overcasting a cast Al-Si-Mg (A356) alloy on a wrought Al-Mg-Si (AA6060) alloy,” J. Mater. Process. Technol., 243, 197–204 (2017).CrossRef
13.
go back to reference H. Kim and I. H. Sun, “Deformation and fracture of diffusion-bonded Cu-Ni-Zn/Cu-Cr layered composite,” Mater. Design, 67, 42–49 (2015).CrossRef H. Kim and I. H. Sun, “Deformation and fracture of diffusion-bonded Cu-Ni-Zn/Cu-Cr layered composite,” Mater. Design, 67, 42–49 (2015).CrossRef
14.
go back to reference X. Li, G. Zu, and P. Wang, “Effect of Strain rate on tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding,” Mater. Sci. Eng. A, 575, No. 13, 61–64 (2013).CrossRef X. Li, G. Zu, and P. Wang, “Effect of Strain rate on tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding,” Mater. Sci. Eng. A, 575, No. 13, 61–64 (2013).CrossRef
15.
go back to reference L. Meng, L. Zhang, Zhou, S. P. Yang, et al., “Effect of annealing temperature on separation strength of Ag/Cu composite plate,” Trans. Mater. Heat Treat., 23, No. 3, 31–34 (in Chinese) (2002). L. Meng, L. Zhang, Zhou, S. P. Yang, et al., “Effect of annealing temperature on separation strength of Ag/Cu composite plate,” Trans. Mater. Heat Treat., 23, No. 3, 31–34 (in Chinese) (2002).
16.
go back to reference S. P. Lu, H. M. Yang, J. S. Yu, et al., “Effect of composite rolling deformation on Ag/Cu bondng interface,” Rare Metals, 37, No. 2, 330–334 (in Chinese) (2013). S. P. Lu, H. M. Yang, J. S. Yu, et al., “Effect of composite rolling deformation on Ag/Cu bondng interface,” Rare Metals, 37, No. 2, 330–334 (in Chinese) (2013).
17.
go back to reference X. P. Zhang, T. H. Yang, S. Castagne, et al., “Proposal of bond criterion for hot roll bonding and its application,” Mater. Design, 32, No. 4, 2239–2245 (2011).CrossRef X. P. Zhang, T. H. Yang, S. Castagne, et al., “Proposal of bond criterion for hot roll bonding and its application,” Mater. Design, 32, No. 4, 2239–2245 (2011).CrossRef
18.
go back to reference Q. Qin, D. T. Zhang, Y. Zang, and B. Guan, “A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate,” Adv. Mech. Eng., 7, No. 7, 1–13 (2015). Q. Qin, D. T. Zhang, Y. Zang, and B. Guan, “A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate,” Adv. Mech. Eng., 7, No. 7, 1–13 (2015).
19.
go back to reference H. Wang, X. Cheng, S. Fu, et al., “Influence of first reduction ratio on the interfacial bonding properties of composite plate of hot rolled stainless steel,” Forg. Stamp. Technol., 41, No. 4, 19–24 (2016). H. Wang, X. Cheng, S. Fu, et al., “Influence of first reduction ratio on the interfacial bonding properties of composite plate of hot rolled stainless steel,” Forg. Stamp. Technol., 41, No. 4, 19–24 (2016).
20.
go back to reference L. Li, X. J. Zhang, H. Y. Lin, and F. X. Yin, “Formation mechanism of oxide inclusion on the interface of hot-rolled stainless steel clad plates,” J. Iron Steel Res., 25, No. 1, 43–47 (2013). L. Li, X. J. Zhang, H. Y. Lin, and F. X. Yin, “Formation mechanism of oxide inclusion on the interface of hot-rolled stainless steel clad plates,” J. Iron Steel Res., 25, No. 1, 43–47 (2013).
21.
go back to reference C. Y. Sun, L. Li, M. W. Fu, and Q. J. Zhou, “Element diffusion model of bimetallic hot deformation in metallurgical bonding process,” Mater. Design, 94, 433–43 (2016).CrossRef C. Y. Sun, L. Li, M. W. Fu, and Q. J. Zhou, “Element diffusion model of bimetallic hot deformation in metallurgical bonding process,” Mater. Design, 94, 433–43 (2016).CrossRef
22.
go back to reference L. R. Vaidyanath., M. G. Nicholas., and D. R. Milner, “Pressure welding by rolling,” Br. Weld. J., 6, 13–28 (1959). L. R. Vaidyanath., M. G. Nicholas., and D. R. Milner, “Pressure welding by rolling,” Br. Weld. J., 6, 13–28 (1959).
23.
go back to reference H. A. Mohamed and J. Washburn, “Mechanism of solid state pressure welding,” Weld. J., 54, 302–310 (1975). H. A. Mohamed and J. Washburn, “Mechanism of solid state pressure welding,” Weld. J., 54, 302–310 (1975).
24.
go back to reference X. P. Zhang, T. H. Yang, S. Castagne, and J. T. Wang, “Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot-rolling,” Mater. Sci. Eng. A, 528, Nos. 4–5, 1954–1960 (2011).CrossRef X. P. Zhang, T. H. Yang, S. Castagne, and J. T. Wang, “Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot-rolling,” Mater. Sci. Eng. A, 528, Nos. 4–5, 1954–1960 (2011).CrossRef
25.
go back to reference J. M. Parks, “Recrystallization in welding,” Weld. J., 32, No. 5, 209s–221s (1953). J. M. Parks, “Recrystallization in welding,” Weld. J., 32, No. 5, 209s–221s (1953).
26.
go back to reference R. Jamaati and M. R. Toroghinejad, “Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process,” Mater. Design, 31, No. 9, 4508–4513 (2010).CrossRef R. Jamaati and M. R. Toroghinejad, “Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process,” Mater. Design, 31, No. 9, 4508–4513 (2010).CrossRef
27.
go back to reference P. He, J. C. Feng, and Y. Y. Qian, “A new model of interfacial physical contact in diffusion bonding,” J. Mater. Sci. Technol., 20, No. 1, 109–112 (2004). P. He, J. C. Feng, and Y. Y. Qian, “A new model of interfacial physical contact in diffusion bonding,” J. Mater. Sci. Technol., 20, No. 1, 109–112 (2004).
28.
go back to reference H. M. Ding, X. L. Fan, J. F. Wang, et al., “Interface characterization of hot-rolled stainless steel/carbon steel clad,” Trans. Mater. Heat Treat., 32, No. 11, 18–22 (2011). H. M. Ding, X. L. Fan, J. F. Wang, et al., “Interface characterization of hot-rolled stainless steel/carbon steel clad,” Trans. Mater. Heat Treat., 32, No. 11, 18–22 (2011).
30.
go back to reference J. Song, “Investigation into friction condition in finite element analysis of rolling problem,” Lubr. Eng., 5, 17–21 (1992). J. Song, “Investigation into friction condition in finite element analysis of rolling problem,” Lubr. Eng., 5, 17–21 (1992).
31.
go back to reference Q. J. Chen, Y. L. Kang, H. P. Hu, et al., “Simulation of rolling process for wide and thin plate of alloy steel by finite element method,” J. Plast. Eng., 12, 163–167 (2005). Q. J. Chen, Y. L. Kang, H. P. Hu, et al., “Simulation of rolling process for wide and thin plate of alloy steel by finite element method,” J. Plast. Eng., 12, 163–167 (2005).
Metadata
Title
Prediction of a High Temperature Bonding Condition at the Interface for the Hot-Rolled Stainless Steel Clad Plate on Rolling
Authors
B. Guan
B. Y. Chen
Y. Zang
Q. Qin
Publication date
03-04-2018
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2018
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9945-1

Other articles of this Issue 1/2018

Strength of Materials 1/2018 Go to the issue

Premium Partners