Skip to main content
Top

2021 | OriginalPaper | Chapter

Prediction of Concrete Breakout Strength of Single Anchors in Shear

Authors : Oladimeji B. Olalusi, Panagiotis Spyridis

Published in: 18th International Probabilistic Workshop

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a machine learning algorithim—a Gaussian process regression (GPR)—for predicting the concrete breakout capacity of single anchors in shear. To this end, experimental strength of 366 tests on single anchors with concrete edge breakout failures were collected from literature to establish the experimental database to train and test the model. 70% of the data were used for the model training, and the rest were used for the model testing. Shear influence factors such as the concrete strength, the anchor diameter, the embedment depth (technically the influence length), and the concrete edge distance were taken as the model input variables. The generated predictive model yielded a determination coefficient \({\text{R}}^{2}\) = 0.99 for both the training and testing data sets. Predictions from the developed models were compared to that of the other existing models (Eurocode 2 and ACI 318) to validate its performance. The developed model provided a better prediction of the experimentally observed shear strength, compared to the existing models, yielding low mean absolute error, low bias and variability when tested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adeli, H. (1986). Artificial intelligence in structural engineering. Engineering Analysis, 3(3), 154–160.CrossRef Adeli, H. (1986). Artificial intelligence in structural engineering. Engineering Analysis, 3(3), 154–160.CrossRef
2.
go back to reference Alqedra, M. A., & Ashour, A. F. (2005). Prediction of shear capacity of single anchors located near a concrete edge using neural networks. Computers and structures, 83(28–30), 2495–2502.CrossRef Alqedra, M. A., & Ashour, A. F. (2005). Prediction of shear capacity of single anchors located near a concrete edge using neural networks. Computers and structures, 83(28–30), 2495–2502.CrossRef
3.
go back to reference Sakla, S. S., & Ashour, A. F. (2005). Prediction of tensile capacity of single adhesive anchors using neural networks. Computers and structures, 83(21–22), 1792–1803.CrossRef Sakla, S. S., & Ashour, A. F. (2005). Prediction of tensile capacity of single adhesive anchors using neural networks. Computers and structures, 83(21–22), 1792–1803.CrossRef
4.
go back to reference Olalusi, O. B., & Spyridis, P. (2020). Machine learning-based models for the concrete breakout capacity prediction of single anchors in shear. Advances in Engineering Software, 147, 102832.CrossRef Olalusi, O. B., & Spyridis, P. (2020). Machine learning-based models for the concrete breakout capacity prediction of single anchors in shear. Advances in Engineering Software, 147, 102832.CrossRef
5.
go back to reference Hoang, N. D., Pham, A. D., Nguyen, Q. L., & Pham, Q. N. (2016). Estimating compressive strength of high performance concrete with Gaussian process regression model. Advances in Civil Engineering. Hoang, N. D., Pham, A. D., Nguyen, Q. L., & Pham, Q. N. (2016). Estimating compressive strength of high performance concrete with Gaussian process regression model. Advances in Civil Engineering.
6.
go back to reference Technical Committee 250/European Committee for Standardisation (CEN/TC 250). EN 1992-4 Eurocode 2. (2018). Design of concrete structures. Design of fastenings for use in concrete. Technical Committee 250/European Committee for Standardisation (CEN/TC 250). EN 1992-4 Eurocode 2. (2018). Design of concrete structures. Design of fastenings for use in concrete.
7.
go back to reference ACI Committee and International Organization for Standardization. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. American Concrete Institute. ACI Committee and International Organization for Standardization. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. American Concrete Institute.
8.
go back to reference Hofmann, J. (2004). Tragverhalten und Bemessung von Befestigungen unter beliebiger Querbelastung in ungerissenem Beton. (Load—Bearing behavior and design of fastenings under arbitrary shear loading in uncracked concrete—In German). Dissertation, University of Stuttgart. Hofmann, J. (2004). Tragverhalten und Bemessung von Befestigungen unter beliebiger Querbelastung in ungerissenem Beton. (Load—Bearing behavior and design of fastenings under arbitrary shear loading in uncracked concrete—In German). Dissertation, University of Stuttgart.
9.
go back to reference Fuchs, W., Eligehausen, R., & Breen, J. E. (1995). Concrete capacity design (CCD) approach for fastening to concrete. Structural Journal, 92(1), 73–94. Fuchs, W., Eligehausen, R., & Breen, J. E. (1995). Concrete capacity design (CCD) approach for fastening to concrete. Structural Journal, 92(1), 73–94.
10.
go back to reference Lee, N. H., Park, K. R., & Suh, Y. P. (2010). Shear behavior of headed anchors with large diameters and deep embedments. ACI Structural Journal, 107(2). Lee, N. H., Park, K. R., & Suh, Y. P. (2010). Shear behavior of headed anchors with large diameters and deep embedments. ACI Structural Journal, 107(2).
11.
go back to reference Bentsen, F. H. (2019). Model Construction with Support Vector Machines and Gaussian Processes through Kernel Search (Master's thesis, The University of Bergen). Bentsen, F. H. (2019). Model Construction with Support Vector Machines and Gaussian Processes through Kernel Search (Master's thesis, The University of Bergen).
12.
go back to reference Ueda, T., Kitipornchai, S., & Ling, K. (1990). Experimental investigation of anchor bolts under shear. Journal of Structural Engineering, 116(4), 910–921.CrossRef Ueda, T., Kitipornchai, S., & Ling, K. (1990). Experimental investigation of anchor bolts under shear. Journal of Structural Engineering, 116(4), 910–921.CrossRef
13.
go back to reference Ueda, T., Stitmannaithum, B., & Matupayont, S. (1991). Experimental investigation on shear strength of bolt anchorage group. Structural Journal, 88(3), 292–300. Ueda, T., Stitmannaithum, B., & Matupayont, S. (1991). Experimental investigation on shear strength of bolt anchorage group. Structural Journal, 88(3), 292–300.
14.
go back to reference Dong-Hyun, K., Yong-Myung, P., Ho-Jung, J., & Moon-Ki, K. (2014). Concrete breakout capacity of cast-in-place anchor under shear loading. Advanced Materials Research. Dong-Hyun, K., Yong-Myung, P., Ho-Jung, J., & Moon-Ki, K. (2014). Concrete breakout capacity of cast-in-place anchor under shear loading. Advanced Materials Research.
15.
go back to reference Hofmann, J., Fuchs, W., & Eligehausen, R. (2004). Quertragfähigkeit randnaher Befes-tigungsmittel mit Belastung senkrecht zum Bauteilrand (Behavior of anchorages arranged close to the edge and loaded towards the edge). In: Beton- und Stahlbetonbau; 99 No. 10, pp. 806–807 (in German). Hofmann, J., Fuchs, W., & Eligehausen, R. (2004). Quertragfähigkeit randnaher Befes-tigungsmittel mit Belastung senkrecht zum Bauteilrand (Behavior of anchorages arranged close to the edge and loaded towards the edge). In: Beton- und Stahlbetonbau; 99 No. 10, pp. 806–807 (in German).
16.
go back to reference Shaikh, A. F., & Yi, W. (1985). In-place strength of welded headed studs. PCI Journal, 30(2), 56–81.CrossRef Shaikh, A. F., & Yi, W. (1985). In-place strength of welded headed studs. PCI Journal, 30(2), 56–81.CrossRef
17.
go back to reference Toth, M., Bokor, B., & Sharma, A. (2019). Anchorage in steel fiber reinforced concrete–concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Engineering Structures, 181, 60–75.CrossRef Toth, M., Bokor, B., & Sharma, A. (2019). Anchorage in steel fiber reinforced concrete–concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Engineering Structures, 181, 60–75.CrossRef
18.
go back to reference Unterweger, A. (2008). Randnahe Anker unter Querlast mechanische Modellierung und Bemessung (Anchors close to edge under shear load). Vienna, Austria: Universität für Bo-denkultur, Dissertation, (In German). Unterweger, A. (2008). Randnahe Anker unter Querlast mechanische Modellierung und Bemessung (Anchors close to edge under shear load). Vienna, Austria: Universität für Bo-denkultur, Dissertation, (In German).
19.
go back to reference Klingner, R. E., Muratli, H., & Shirvani, M. (1999). A technical basis for revision to anchorage criteria. Division of Engineering Technology, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission. Klingner, R. E., Muratli, H., & Shirvani, M. (1999). A technical basis for revision to anchorage criteria. Division of Engineering Technology, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission.
20.
go back to reference Grosser, P. (2010). Single anchors loaded in shear close to the edge in high strength concrete. Test Report, Stuttgart, Germany: Institute of Construction Materials, University of Stuttgart. Report No. E 10/19 – Bft/17, not published Grosser, P. (2010). Single anchors loaded in shear close to the edge in high strength concrete. Test Report, Stuttgart, Germany: Institute of Construction Materials, University of Stuttgart. Report No. E 10/19 – Bft/17, not published
21.
go back to reference Spyridis, P. (2011). Behavior of anchor groups under shear loads—Influence of assembly tolerances. Dissertation. University of Natural resources and Life Sciences of Vienna. Spyridis, P. (2011). Behavior of anchor groups under shear loads—Influence of assembly tolerances. Dissertation. University of Natural resources and Life Sciences of Vienna.
22.
go back to reference Senftleben, S. (2010). Zum Tragverhalten von randnahen Reihenbefestigungen beansprucht durch eine Querlast parallel zum Bauteilrand. (Behavior of multiple anchor connections close to the edge under shear loading parallel to the edge). Stuttgart, Germany: Institute of Construction Materials, University of Stuttgart, Diploma Thesis, (in German). Senftleben, S. (2010). Zum Tragverhalten von randnahen Reihenbefestigungen beansprucht durch eine Querlast parallel zum Bauteilrand. (Behavior of multiple anchor connections close to the edge under shear loading parallel to the edge). Stuttgart, Germany: Institute of Construction Materials, University of Stuttgart, Diploma Thesis, (in German).
23.
go back to reference Gesoğlu, M., Güneyisi, E. M., Güneyisi, E., Yılmaz, M. E., & Mermerdaş, K. (2014). Modeling and analysis of the shear capacity of adhesive anchors post-installed into uncracked concrete. Composites Part B: Engineering, 60, 716–724.CrossRef Gesoğlu, M., Güneyisi, E. M., Güneyisi, E., Yılmaz, M. E., & Mermerdaş, K. (2014). Modeling and analysis of the shear capacity of adhesive anchors post-installed into uncracked concrete. Composites Part B: Engineering, 60, 716–724.CrossRef
24.
go back to reference Olalusi, O. B., & Viljoen, C. (2020). Model uncertainties and bias in SHEAR strength predictions of slender stirrup reinforced concrete beams. Structural Concrete, 21(1), 316–332.CrossRef Olalusi, O. B., & Viljoen, C. (2020). Model uncertainties and bias in SHEAR strength predictions of slender stirrup reinforced concrete beams. Structural Concrete, 21(1), 316–332.CrossRef
25.
go back to reference Olalusi, O. B., & Spyridis, P. (2020). Uncertainty modelling and analysis of the concrete edge breakout resistance of single anchors in shear. Engineering Structures, 222, 111112.CrossRef Olalusi, O. B., & Spyridis, P. (2020). Uncertainty modelling and analysis of the concrete edge breakout resistance of single anchors in shear. Engineering Structures, 222, 111112.CrossRef
Metadata
Title
Prediction of Concrete Breakout Strength of Single Anchors in Shear
Authors
Oladimeji B. Olalusi
Panagiotis Spyridis
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_42