Skip to main content
Top

2024 | OriginalPaper | Chapter

Prediction of Tribological Behaviour of AA5083/CSA-ZnO Hybrid Composites Using Machine Learning and Artificial Intelligence Techniques

Authors : A. Nagaraj, S. Gopalakrishnan, M. Sakthivel, D. Shivalingappa

Published in: Structural Composite Materials

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aluminium Alloys AA5083 dispersed with varying fractions of reinforcement was fabricated through the stir casting method. In varying weight percentage combinations, zinc oxide (ZnO) and coconut shell ash (CSA) particles were combined to create hybrid reinforcement particles. Using a pin-on-disc tribometer, the wear characteristics of the developed AA5083 hybrid composites were estimated. The volumetric proportion of hybrid reinforcement particles CSA (3, 6, 9 and 3 ZnO wt%), load (20, 30, 40 N), sliding velocity (2, 3, and 4 m/s), Cumulative Time (4.16, 5.55, and 8.33 min), and sliding distance are some of the experimental parameters (1000 m). Wear analysis revealed effective bonding and homogeneous dispersion of hybrid reinforcement particles onto the AA5083. Analysis of Specific Wear Rate (SWR) results showed that Specific Wear Rate rose with load, sliding velocity, and sliding duration while decreasing with hybrid particle dispersion. This research proposes the use of several intelligent classification techniques using Machine Learning (ML) and Artificial Neural Network (ANN) to predict the wear rate of an AA 5083 hybrid composite. For estimating wear quantities, the algorithms Random Forest (RF), Neural Network (NN), and k-nearest neighbours (kNN) are utilized. Six inputs are utilized to train and evaluate the Machine Learning (ML) algorithms: the Applied Load (N), Sliding Velocity, Sliding Speed, Cumulative Time, Percentage of Reinforcements, and Sliding Distance. The output is the Specific Wear Rate (SWR). The RF, NN, and KNN algorithms all produced success rates of correlation between experimental to anticipated of 0.90, 0.84, and 0.90, respectively. The same model data was utilised to train and evaluate Artificial Neural Networks (ANN), with the Multilayer Perceptron (MLP) network having the lowest Mean Square Error (MSE) to improve machine learning prediction accuracy. Maximum estimate error range of 0.1%, training and cross-validation of 0.00000496 and 0.0261, respectively, with linear correlation coefficient in testing of 0.9999 or 99.9% better prediction accuracy rate. The AA 5083 composites were designed and implemented using this machine learning and artificial neural network model for forecasting specific wear rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ikumapayi OM, Akinlabi ET, Pal SK, Majumdar JD (2019) A survey on reinforcements used in friction stir processing of aluminium metal matrix and hybrid composites. Proc Manuf 35:935–940 Ikumapayi OM, Akinlabi ET, Pal SK, Majumdar JD (2019) A survey on reinforcements used in friction stir processing of aluminium metal matrix and hybrid composites. Proc Manuf 35:935–940
2.
go back to reference Sudherson DPS, Sunil J (2020) Dry sliding wear behaviour of novel AA5083-cadmium alloy prepared by stir casting process. Mater Today: Proc 21:142–147 Sudherson DPS, Sunil J (2020) Dry sliding wear behaviour of novel AA5083-cadmium alloy prepared by stir casting process. Mater Today: Proc 21:142–147
3.
go back to reference Zhang T, Li DY (2001) Improvement in the resistance of aluminum with yttria particles to sliding wear in air and in a corrosive medium. Wear 251(1–12):1250–1256CrossRef Zhang T, Li DY (2001) Improvement in the resistance of aluminum with yttria particles to sliding wear in air and in a corrosive medium. Wear 251(1–12):1250–1256CrossRef
4.
go back to reference Arulraj M, Palani PK (2018) Parametric optimization for improving impact strength of squeeze cast of hybrid metal matrix (LM24–SiC p–coconut shell ash) composite. J Braz Soc Mech Sci Eng 40(1):2CrossRef Arulraj M, Palani PK (2018) Parametric optimization for improving impact strength of squeeze cast of hybrid metal matrix (LM24–SiC p–coconut shell ash) composite. J Braz Soc Mech Sci Eng 40(1):2CrossRef
6.
go back to reference Tun KS, Jayaramanavar P, Nguyen QB, Chan J, Kwok R, Gupta M (2012) Investigation into tensile and compressive responses of Mg–ZnO composites. Mater Sci Technol 28(5):582–588CrossRef Tun KS, Jayaramanavar P, Nguyen QB, Chan J, Kwok R, Gupta M (2012) Investigation into tensile and compressive responses of Mg–ZnO composites. Mater Sci Technol 28(5):582–588CrossRef
8.
go back to reference Jasim AH, Joudi WM, Radhi NS, Saud AN (2020) Mechanical properties and wear characteristic of (aluminum-zinc oxide) metal matrix composite prepared using stir casting process. Mater Sci Forum 1002:175–184. Trans Tech Publications Ltd Jasim AH, Joudi WM, Radhi NS, Saud AN (2020) Mechanical properties and wear characteristic of (aluminum-zinc oxide) metal matrix composite prepared using stir casting process. Mater Sci Forum 1002:175–184. Trans Tech Publications Ltd
11.
go back to reference Thiyaneshwaran N, Sureshkumar P (2013) Microstructure, mechanical and wear properties of aluminum 5083 alloy processed by equal channel angular extrusion. Int J Eng Res Technol 2:17–24 Thiyaneshwaran N, Sureshkumar P (2013) Microstructure, mechanical and wear properties of aluminum 5083 alloy processed by equal channel angular extrusion. Int J Eng Res Technol 2:17–24
12.
go back to reference Bathula S, Saravanan M, Dhar A (2012) Nanoindentation and wear characteristics of Al 5083/SiCp nanocomposites synthesized by high energy ball milling and spark plasma sintering. J Mater Sci Technol 28(11):969–975CrossRef Bathula S, Saravanan M, Dhar A (2012) Nanoindentation and wear characteristics of Al 5083/SiCp nanocomposites synthesized by high energy ball milling and spark plasma sintering. J Mater Sci Technol 28(11):969–975CrossRef
13.
go back to reference Madakson PB, Yawas DS, Apasi A (2012) Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int J Eng Sci Technol 4(3):1190–1198 Madakson PB, Yawas DS, Apasi A (2012) Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int J Eng Sci Technol 4(3):1190–1198
14.
go back to reference Daramola OO, Adediran AA, Fadumiye AT (2015) Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063) alloy composites. Leonardo Electron J Pract Technol 27:107–119 Daramola OO, Adediran AA, Fadumiye AT (2015) Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063) alloy composites. Leonardo Electron J Pract Technol 27:107–119
15.
go back to reference Agunsoyea JO, Talabib SI, Belloa SA, Awec IO (2014) The effects of Cocos Nucifera (coconut shell) on the mechanical and tribological properties of recycled waste aluminium can composites. Tribol Industry 36(2) Agunsoyea JO, Talabib SI, Belloa SA, Awec IO (2014) The effects of Cocos Nucifera (coconut shell) on the mechanical and tribological properties of recycled waste aluminium can composites. Tribol Industry 36(2)
19.
go back to reference Abd Jalil K, Kamarudin MH, Masrek MN (2010) Comparison of machine learning algorithms performance in detecting network intrusion. In: 2010 international conference on networking and information technology. IEEE, pp 221–226 Abd Jalil K, Kamarudin MH, Masrek MN (2010) Comparison of machine learning algorithms performance in detecting network intrusion. In: 2010 international conference on networking and information technology. IEEE, pp 221–226
20.
go back to reference Tretyakov K (2004) Machine learning techniques in spam filtering. In: Data mining problem-oriented seminar, MTAT, vol 3, No 177, pp 60–79. Citeseer Tretyakov K (2004) Machine learning techniques in spam filtering. In: Data mining problem-oriented seminar, MTAT, vol 3, No 177, pp 60–79. Citeseer
22.
go back to reference Nagaraj A, Gopalakrishnan S (2021) A study on mechanical and tribological properties of aluminium 1100 alloys 6% of RHAp, BAp, CSAp, ZnOp and egg shellp composites by ANN. SILICON 13(10):3367–3376CrossRef Nagaraj A, Gopalakrishnan S (2021) A study on mechanical and tribological properties of aluminium 1100 alloys 6% of RHAp, BAp, CSAp, ZnOp and egg shellp composites by ANN. SILICON 13(10):3367–3376CrossRef
23.
go back to reference Mazahery A, Shabani MO (2012) Study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceram Int 38(5):4263–4269CrossRef Mazahery A, Shabani MO (2012) Study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceram Int 38(5):4263–4269CrossRef
24.
go back to reference Alizadeh A, Abdollahi A, Biukani H (2015) Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J Alloy Compd 650:783–793CrossRef Alizadeh A, Abdollahi A, Biukani H (2015) Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J Alloy Compd 650:783–793CrossRef
25.
go back to reference Zhao Q, Liang Y, Zhang Z, Li X, Ren L (2016) Microstructure and dry-Sliding wear behavior of B4C ceramic particulate reinforced Al 5083 matrix composite. Metals 6(9):227CrossRef Zhao Q, Liang Y, Zhang Z, Li X, Ren L (2016) Microstructure and dry-Sliding wear behavior of B4C ceramic particulate reinforced Al 5083 matrix composite. Metals 6(9):227CrossRef
Metadata
Title
Prediction of Tribological Behaviour of AA5083/CSA-ZnO Hybrid Composites Using Machine Learning and Artificial Intelligence Techniques
Authors
A. Nagaraj
S. Gopalakrishnan
M. Sakthivel
D. Shivalingappa
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-5982-2_12

Premium Partners