Skip to main content
Top

2011 | OriginalPaper | Chapter

9. Preference Vector Ant Colony System for Minimising Make-span and Energy Consumption in a Hybrid Flow Shop

Authors : Bing Du, Huaping Chen, George Q. Huang, H. D. Yang

Published in: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traditionally, scheduling problems usually deal with the objectives related to production efficiency (e.g., the make-span, the total completion time, the maximum lateness and the number of tardy jobs). However, sustainable manufacturing should minimise the energy consumption during production process. Energy consumption not only constitutes a major portion of total production cost but also results in significant environmental effects. In this chapter, we discuss a multi-objective scheduling problem in a hybrid flow shop. Two objectives considered in the proposed model are to minimise make-span and energy consumption. These two objectives are often in conflict with each other. A Preference Vector Ant Colony System (PVACS) is developed to search for a set of Pareto-optimal solutions using meta-heuristics for multi-objective optimisation. PVACS allows the search in the solution space to focus on the specific areas which are of particular interest to decision-makers, instead of searching for the entire Pareto frontier. This is achieved by maintaining a separate pheromone matrix for each objective, respectively and assigning each ant a preference vector that represents the preference between the two objectives of the decision-makers. The performance of PVACS was compared to two well-known multi-objective genetic algorithms: SPEA2 and NSGA-II. The experimental results show that PVACS outperforms the other two algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference U.N. Environment Programme. (2010). Green economy report: a preview. U.N. Environment Programme. (2010). Green economy report: a preview.
2.
go back to reference Institute, T. M. (2009). The facts about modern manufacturing (8th ed.). Institute, T. M. (2009). The facts about modern manufacturing (8th ed.).
3.
go back to reference US Department of Commerce, E.a.S.A. (2010). Measuring the green economy. US Department of Commerce, E.a.S.A. (2010). Measuring the green economy.
5.
go back to reference Tacconi, L. (2000). Biodiversity and ecological economics: Participation, values, and resource management. London: Earthscan/James & James. Tacconi, L. (2000). Biodiversity and ecological economics: Participation, values, and resource management. London: Earthscan/James & James.
6.
go back to reference US Energy Information Administration. (2009). International Energy Outlook 2009 US Energy Information Administration. (2009). International Energy Outlook 2009
7.
go back to reference Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45, 4247–4271.MATHCrossRef Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45, 4247–4271.MATHCrossRef
8.
go back to reference Lei, D. M. (2009). Multi-objective production scheduling: a survey. International Journal of Advanced Manufacturing Technology, 43(9–10), 926–938.CrossRef Lei, D. M. (2009). Multi-objective production scheduling: a survey. International Journal of Advanced Manufacturing Technology, 43(9–10), 926–938.CrossRef
9.
go back to reference Ross, M. (1992). Efficient energy use in manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 89(3), 827–831.CrossRef Ross, M. (1992). Efficient energy use in manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 89(3), 827–831.CrossRef
10.
go back to reference Park, S. H., Dissmann, B., & Nam, K. Y. (1993). A cross-country decomposition analysis of manufacturing energy-consumption. Energy, 18(8), 843–858.CrossRef Park, S. H., Dissmann, B., & Nam, K. Y. (1993). A cross-country decomposition analysis of manufacturing energy-consumption. Energy, 18(8), 843–858.CrossRef
11.
go back to reference Fromme, J. W. (1996). Energy conservation in the Russian manufacturing industry—Potentials and obstacles. Energy Policy, 24(3), 245–252.CrossRef Fromme, J. W. (1996). Energy conservation in the Russian manufacturing industry—Potentials and obstacles. Energy Policy, 24(3), 245–252.CrossRef
12.
go back to reference Golove, W. H., & Schipper, L. J. (1996). Long-term trends in US manufacturing energy consumption and carbon dioxide emissions. Energy, 21(7–8), 683–692.CrossRef Golove, W. H., & Schipper, L. J. (1996). Long-term trends in US manufacturing energy consumption and carbon dioxide emissions. Energy, 21(7–8), 683–692.CrossRef
13.
go back to reference Adenikinju, A. F. (1998). Productivity growth and energy consumption in the Nigerian manufacturing sector: A panel data analysis. Energy Policy, 26(3), 199–205.CrossRef Adenikinju, A. F. (1998). Productivity growth and energy consumption in the Nigerian manufacturing sector: A panel data analysis. Energy Policy, 26(3), 199–205.CrossRef
14.
go back to reference Bentzen, J. (2004). Estimating the rebound effect in US manufacturing energy consumption. Energy Economics, 26(1), 123–134.CrossRef Bentzen, J. (2004). Estimating the rebound effect in US manufacturing energy consumption. Energy Economics, 26(1), 123–134.CrossRef
15.
go back to reference Draganescu, F., Gheorghe, M., & Doicin, C. V. (2003). Models of machine tool efficiency and specific consumed energy. Journal of Materials Processing Technology, 141(1), 9–15.CrossRef Draganescu, F., Gheorghe, M., & Doicin, C. V. (2003). Models of machine tool efficiency and specific consumed energy. Journal of Materials Processing Technology, 141(1), 9–15.CrossRef
16.
go back to reference Dietmair, A., & Verl, A. (2009). Energy consumption forecasting and optimization for tool machines. Modern Machinery Science Journal, 62–67. Dietmair, A., & Verl, A. (2009). Energy consumption forecasting and optimization for tool machines. Modern Machinery Science Journal, 62–67.
17.
go back to reference Herrmann, C., & Thiede, S. (2009). Process chain simulation to foster energy efficiency in manufacturing. CIRP Journal of Manufacturing Science and Technology, 1(4), 221–229.CrossRef Herrmann, C., & Thiede, S. (2009). Process chain simulation to foster energy efficiency in manufacturing. CIRP Journal of Manufacturing Science and Technology, 1(4), 221–229.CrossRef
18.
go back to reference Wolters, W. T. M., Lambert, A. J. D., & Claus, J. (1995). Sequencing problems in designing energy efficient production systems. International Journal of Production Economics, 41(1–3), 405–410.CrossRef Wolters, W. T. M., Lambert, A. J. D., & Claus, J. (1995). Sequencing problems in designing energy efficient production systems. International Journal of Production Economics, 41(1–3), 405–410.CrossRef
19.
go back to reference Park, C. W., et al. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173.CrossRef Park, C. W., et al. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173.CrossRef
20.
go back to reference Fonseca, C., & Fleming, P. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1), 1–16.CrossRef Fonseca, C., & Fleming, P. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1), 1–16.CrossRef
21.
go back to reference Coello, C. A. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.CrossRef Coello, C. A. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.CrossRef
22.
go back to reference Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100 Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100
23.
go back to reference Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-wesley.MATH Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-wesley.MATH
24.
go back to reference Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.CrossRef Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.CrossRef
25.
go back to reference Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (pp. 418) Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (pp. 418)
26.
go back to reference Fonseca, C., Fleming, P. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423 Fonseca, C., Fleming, P. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423
27.
go back to reference Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.CrossRef Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.CrossRef
28.
go back to reference Rudolph, G., & Agapie, A. (2000). Convergence properties of some multi-objective evolutionary algorithms. In Proceedings of the 2000 Congress on Evolutionary Computation (Vols 1 and 2, pp. 1010–1016) Rudolph, G., & Agapie, A. (2000). Convergence properties of some multi-objective evolutionary algorithms. In Proceedings of the 2000 Congress on Evolutionary Computation (Vols 1 and 2, pp. 1010–1016)
29.
go back to reference Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100 Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100
30.
go back to reference Knowles, J., & Corne, D. (2000). Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation, 8(2), 149–172.CrossRef Knowles, J., & Corne, D. (2000). Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation, 8(2), 149–172.CrossRef
31.
go back to reference Deb, K., et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.MathSciNetCrossRef Deb, K., et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.MathSciNetCrossRef
32.
go back to reference Chaudhuri, S., & Deb, K. (2010). An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing, 10(2), 496–511.CrossRef Chaudhuri, S., & Deb, K. (2010). An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing, 10(2), 496–511.CrossRef
33.
go back to reference Doerner, K., et al. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1–4), 79–99.MathSciNetMATHCrossRef Doerner, K., et al. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1–4), 79–99.MathSciNetMATHCrossRef
34.
go back to reference Doerner, K. F., et al. (2006). Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. European Journal of Operational Research, 171(3), 830–841.MathSciNetMATHCrossRef Doerner, K. F., et al. (2006). Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. European Journal of Operational Research, 171(3), 830–841.MathSciNetMATHCrossRef
35.
go back to reference Xia, W. J., & Wu, Z. M. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409–425.MathSciNetCrossRef Xia, W. J., & Wu, Z. M. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409–425.MathSciNetCrossRef
36.
go back to reference Sedenka, V., & Raida, Z. (2010). Critical comparison of multi-objective optimization methods: Genetic algorithms versus swarm intelligence. Radioengineering, 19(3), 369–377. Sedenka, V., & Raida, Z. (2010). Critical comparison of multi-objective optimization methods: Genetic algorithms versus swarm intelligence. Radioengineering, 19(3), 369–377.
37.
go back to reference Berrichi, A., et al. (2010). Bi-objective ant colony optimization approach to optimize production and maintenance scheduling. Computers & Operations Research, 37(9), 1584–1596.MathSciNetMATHCrossRef Berrichi, A., et al. (2010). Bi-objective ant colony optimization approach to optimize production and maintenance scheduling. Computers & Operations Research, 37(9), 1584–1596.MathSciNetMATHCrossRef
38.
go back to reference Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137(1), 1–9.MATHCrossRef Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137(1), 1–9.MATHCrossRef
39.
go back to reference Tan, K. C., Lee, T. H., & Khor, E. F. (2002). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 17(4), 253–290.CrossRef Tan, K. C., Lee, T. H., & Khor, E. F. (2002). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 17(4), 253–290.CrossRef
40.
go back to reference Zitzler, E., et al. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.CrossRef Zitzler, E., et al. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.CrossRef
41.
go back to reference Pinedo, M. (2002). Scheduling: theory, algorithms and systems. Upper Saddle River, NJ: Prentice-Hall.MATH Pinedo, M. (2002). Scheduling: theory, algorithms and systems. Upper Saddle River, NJ: Prentice-Hall.MATH
42.
go back to reference Gupta, J. (1988). Two-stage, hybrid flowshop scheduling problem. The Journal of the Operational Research Society, 39(4), 359–364.MATH Gupta, J. (1988). Two-stage, hybrid flowshop scheduling problem. The Journal of the Operational Research Society, 39(4), 359–364.MATH
43.
go back to reference Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers & Industrial Engineering, 37(1–2), 57–61.CrossRef Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers & Industrial Engineering, 37(1–2), 57–61.CrossRef
44.
go back to reference Ribas, I., Leisten, R., & Framinan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439–1454.MathSciNetMATHCrossRef Ribas, I., Leisten, R., & Framinan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439–1454.MathSciNetMATHCrossRef
45.
go back to reference Ruiz, R., & Vazquez-Rodriguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18.MathSciNetMATHCrossRef Ruiz, R., & Vazquez-Rodriguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18.MathSciNetMATHCrossRef
46.
go back to reference Huang, W., & Li, S. (1998). A two-stage hybrid flowshop with uniform machines and setup times. Mathematical and Computer Modelling, 27(2), 27–45.MathSciNetMATHCrossRef Huang, W., & Li, S. (1998). A two-stage hybrid flowshop with uniform machines and setup times. Mathematical and Computer Modelling, 27(2), 27–45.MathSciNetMATHCrossRef
47.
go back to reference Dessouky, M. M., Dessouky, M. I., & Verma, S. K. (1998). Flowshop scheduling with identical jobs and uniform parallel machines. European Journal of Operational Research, 109(3), 620–631.MATHCrossRef Dessouky, M. M., Dessouky, M. I., & Verma, S. K. (1998). Flowshop scheduling with identical jobs and uniform parallel machines. European Journal of Operational Research, 109(3), 620–631.MATHCrossRef
48.
go back to reference Soewandi, H., & Elmaghraby, S. E. (2003). Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transactions, 35(5), 467–477.CrossRef Soewandi, H., & Elmaghraby, S. E. (2003). Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transactions, 35(5), 467–477.CrossRef
49.
go back to reference Kyparisis, G. J., & Koulamas, C. (2006). A note on makespan minimization in two-stage flexible flow shops with uniform machines. European Journal of Operational Research, 175(2), 1321–1327.MATHCrossRef Kyparisis, G. J., & Koulamas, C. (2006). A note on makespan minimization in two-stage flexible flow shops with uniform machines. European Journal of Operational Research, 175(2), 1321–1327.MATHCrossRef
50.
go back to reference Bertel, S., & Billaut, J. C. (2004). A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research, 159(3), 651–662.MathSciNetMATHCrossRef Bertel, S., & Billaut, J. C. (2004). A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research, 159(3), 651–662.MathSciNetMATHCrossRef
51.
go back to reference Sevastianov, S. V. (2002). Geometrical heuristics for multiprocessor flowshop scheduling with uniform machines at each stage. Journal of Scheduling, 5(3), 205–225.MathSciNetMATHCrossRef Sevastianov, S. V. (2002). Geometrical heuristics for multiprocessor flowshop scheduling with uniform machines at each stage. Journal of Scheduling, 5(3), 205–225.MathSciNetMATHCrossRef
52.
go back to reference Kyparisis, G. J., & Koulamas, C. (2001). A note on weighted completion time minimization in a flexible flow shop. Operations Research Letters, 29(1), 5–11.MathSciNetMATHCrossRef Kyparisis, G. J., & Koulamas, C. (2001). A note on weighted completion time minimization in a flexible flow shop. Operations Research Letters, 29(1), 5–11.MathSciNetMATHCrossRef
53.
go back to reference Kyparisis, G. J., & Koulamas, C. (2006). Flexible flow shop scheduling with uniform parallel machines. European Journal of Operational Research, 168(3), 985–997.MathSciNetMATHCrossRef Kyparisis, G. J., & Koulamas, C. (2006). Flexible flow shop scheduling with uniform parallel machines. European Journal of Operational Research, 168(3), 985–997.MathSciNetMATHCrossRef
54.
go back to reference Verma, S., & Dessouky, M. (1999). Multistage hybrid flowshop scheduling with identical jobs and uniform parallel machines. Journal of Scheduling, 2(3), 135–150.MathSciNetMATHCrossRef Verma, S., & Dessouky, M. (1999). Multistage hybrid flowshop scheduling with identical jobs and uniform parallel machines. Journal of Scheduling, 2(3), 135–150.MathSciNetMATHCrossRef
55.
go back to reference Voss, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application. International Journal of Production Economics, 105(2), 445–458.CrossRef Voss, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application. International Journal of Production Economics, 105(2), 445–458.CrossRef
56.
go back to reference Graham, R., et al. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5(2), 287–326.MathSciNetMATHCrossRef Graham, R., et al. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5(2), 287–326.MathSciNetMATHCrossRef
57.
go back to reference Colorni, A., Dorigo, M., Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life (pp. 134–142) Colorni, A., Dorigo, M., Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life (pp. 134–142)
58.
go back to reference Colorni, A., et al. (1994). Ant system for job-shop scheduling. Journal of Operations Research and Statistic Computing Science, 34(1), 39–53.MATH Colorni, A., et al. (1994). Ant system for job-shop scheduling. Journal of Operations Research and Statistic Computing Science, 34(1), 39–53.MATH
59.
go back to reference Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 26(1), 29–41.CrossRef Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 26(1), 29–41.CrossRef
60.
go back to reference Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2), 426–438.MathSciNetMATHCrossRef Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2), 426–438.MathSciNetMATHCrossRef
61.
go back to reference Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6(4), 333–346.CrossRef Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6(4), 333–346.CrossRef
62.
go back to reference Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.CrossRef Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.CrossRef
63.
go back to reference T’Kindt, V., et al. (2002). An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research, 142(2), 250–257.MathSciNetMATHCrossRef T’Kindt, V., et al. (2002). An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research, 142(2), 250–257.MathSciNetMATHCrossRef
64.
go back to reference Jayaraman, V. K., et al. (2000). Ant colony framework for optimal design and scheduling of batch plants. Computers & Chemical Engineering, 24(8), 1901–1912.MathSciNetCrossRef Jayaraman, V. K., et al. (2000). Ant colony framework for optimal design and scheduling of batch plants. Computers & Chemical Engineering, 24(8), 1901–1912.MathSciNetCrossRef
65.
66.
go back to reference Mariano, C. E., Morales, E. (1999). MOAQ an Ant-Q algorithm for multiple objective optimization problems. In Gecco-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 894–901. Mariano, C. E., Morales, E. (1999). MOAQ an Ant-Q algorithm for multiple objective optimization problems. In Gecco-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 894–901.
67.
go back to reference Yagmahan, B., & Yenisey, M. M. (2008). Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering, 54(3), 411–420.CrossRef Yagmahan, B., & Yenisey, M. M. (2008). Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering, 54(3), 411–420.CrossRef
68.
go back to reference Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time—a quick method of obtaining a near optimum. Operations Research Quarterly, 16(1), 101–107.MathSciNetCrossRef Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time—a quick method of obtaining a near optimum. Operations Research Quarterly, 16(1), 101–107.MathSciNetCrossRef
69.
go back to reference Damodaran, P., Manjeshwar, P. K., & Srihari, K. (2006). Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms. International Journal of Production Economics, 103(2), 882–891.CrossRef Damodaran, P., Manjeshwar, P. K., & Srihari, K. (2006). Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms. International Journal of Production Economics, 103(2), 882–891.CrossRef
70.
go back to reference Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 8(2), 173–195.CrossRef Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 8(2), 173–195.CrossRef
Metadata
Title
Preference Vector Ant Colony System for Minimising Make-span and Energy Consumption in a Hybrid Flow Shop
Authors
Bing Du
Huaping Chen
George Q. Huang
H. D. Yang
Copyright Year
2011
Publisher
Springer London
DOI
https://doi.org/10.1007/978-0-85729-652-8_9

Premium Partners