Skip to main content
Top
Published in: Topics in Catalysis 9-11/2017

10-04-2017 | Original Paper

Preparation and Characterization of Ni5Ga3 for Methanol Formation via CO2 Hydrogenation

Authors: Chao Lung Chiang, Kuen Song Lin, Yan Gu Lin

Published in: Topics in Catalysis | Issue 9-11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A nickel–gallium catalyst (Ni5Ga3) with superior catalytic performance for the hydrogenation of CO2 into methanol was prepared by co-precipitation, and calcined for 7 h at 600 °C in a flowing stream of air containing hydrogen. On the basis of measurements of X-ray photoelectron spectra (XPS), the fraction of integrated area of Ga2O3 over the Ni5Ga3 surface decreased significantly from 75.24 to 53.24%. Spectra showing X-ray absorption near-edge structure (XANES) indicate that the oxidation state of gallium atoms shifted from Ga(0) to Ga(III) indicating that Ga is a reactive component. Extended X-ray absorption fine structure (EXAFS) showed that the first shells of gallium and its adjacent atoms in fresh and used Ni5Ga3 were Ga–Ga and Ga–O, respectively. The coordination number, 5.56, of Ga atoms in used Ni5Ga3 was larger than that, 5.31, in the fresh catalyst; the bond Ga–O of length 1.94 Å is shorter than the bond Ga–Ga of length 1.98 Å. These results of XPS and XANES/EXAFS analyses indicate that the reactive gallium in Ni5Ga3 is first oxidized to Ga2O3 and then carbonated to GaCO3 over the catalyst surface during the formation of methanol. That formation was demonstrated through the appearance of specific peaks at 3681, 2982, 1345, and 1053 cm−1 for the absorption of methanol in infrared spectra recorded in situ. At 250 °C and 50 bar, the greatest conversion of CO2 was 95.7% and the greatest yield of methanol was 72.2%. In terms of the formation of dimethyl ether, the optimal reaction temperature with greatest selectivity (47.6%) and yield (27.8%) was 350 °C. Most importantly, the conversions of CO2 at 150, 250 and 350 °C were much larger than the equilibrium conversions, 47.6, 47.8 and 47.2%, of CO2, which indicates that Ni5Ga3 prevented the formation of water so that methanol could be produced continuously. For the formation of methanol with Ni5Ga3, the optimal Gibbs energy was 4.23 kJ mol−1; the equilibrium constant was 0.378 h−1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rackley S (2009) Carbon capture and storage. Butterworth-Heinemann. Oxford Rackley S (2009) Carbon capture and storage. Butterworth-Heinemann. Oxford
2.
go back to reference Dibenedetto A, Angelini A, Stufano P (2013) J Chem Technol Biotechnol 89:334–353CrossRef Dibenedetto A, Angelini A, Stufano P (2013) J Chem Technol Biotechnol 89:334–353CrossRef
3.
go back to reference Razali NAM, Lee KT, Bhatia S, Mohamed R (2012) Renew Sustain Energy Rev 16:4951–4964CrossRef Razali NAM, Lee KT, Bhatia S, Mohamed R (2012) Renew Sustain Energy Rev 16:4951–4964CrossRef
4.
go back to reference Dagle RA, Hu J, Jones SB, Wilcox W, Frye JG, White JF, Jiang J, Wang Y (2013) J Energy Chem 22:368–374CrossRef Dagle RA, Hu J, Jones SB, Wilcox W, Frye JG, White JF, Jiang J, Wang Y (2013) J Energy Chem 22:368–374CrossRef
5.
go back to reference Ramachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB, Atiyeh HK, Huhnke RL (2013) Appl Energy 112:289–299CrossRef Ramachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB, Atiyeh HK, Huhnke RL (2013) Appl Energy 112:289–299CrossRef
6.
7.
8.
go back to reference Xu Y, Ye TQ, Qiu SB, Ning S, Gong FY, Liu Y, Li QX (2011) Bioresour Technol 1026239–6245CrossRef Xu Y, Ye TQ, Qiu SB, Ning S, Gong FY, Liu Y, Li QX (2011) Bioresour Technol 1026239–6245CrossRef
9.
go back to reference Miguel CV, Soria MA, Mendes A, Madeira LM (2015) J Nat Gas Sci Eng 22:1–8CrossRef Miguel CV, Soria MA, Mendes A, Madeira LM (2015) J Nat Gas Sci Eng 22:1–8CrossRef
10.
11.
12.
go back to reference Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C (2012) ACS Catal 2:1667–1676CrossRef Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C (2012) ACS Catal 2:1667–1676CrossRef
14.
go back to reference Studt F, Sharafutdinov I, Pedersen FA, Elkjaer CF, Hummelshoj JS, Dahl S, Chorkendorff I, Norskov JK (2014) Nat Chem 6320–324CrossRef Studt F, Sharafutdinov I, Pedersen FA, Elkjaer CF, Hummelshoj JS, Dahl S, Chorkendorff I, Norskov JK (2014) Nat Chem 6320–324CrossRef
16.
go back to reference Ma YM, Chen HY, Yang KF, Li M, Cui QL, Liu J, Zou GT (2008) Chin Phys Lett 251603–1605CrossRef Ma YM, Chen HY, Yang KF, Li M, Cui QL, Liu J, Zou GT (2008) Chin Phys Lett 251603–1605CrossRef
25.
go back to reference Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995–3009CrossRef Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995–3009CrossRef
26.
go back to reference Fortes MP, Schoneberger JC, Boulamanti A, Tzimas E (2016) Appl Energy 161:718–732CrossRef Fortes MP, Schoneberger JC, Boulamanti A, Tzimas E (2016) Appl Energy 161:718–732CrossRef
27.
go back to reference Kobl K, Thomas S, Zimmermann Y, Parkhomenko K, Roger AC (2016) Catal Today 270:31–42CrossRef Kobl K, Thomas S, Zimmermann Y, Parkhomenko K, Roger AC (2016) Catal Today 270:31–42CrossRef
28.
go back to reference Aguayo AT, Erena J, Mier D, Arandes JM, Olazar M, Bilbao J (2007) Ind Eng Chem Res 46:5522–5530CrossRef Aguayo AT, Erena J, Mier D, Arandes JM, Olazar M, Bilbao J (2007) Ind Eng Chem Res 46:5522–5530CrossRef
29.
go back to reference Smith M, Van Ness HC, Abbott MM (2005) Introduction to chemical engineering thermodynamics. McGraw-Hill, New York Smith M, Van Ness HC, Abbott MM (2005) Introduction to chemical engineering thermodynamics. McGraw-Hill, New York
30.
go back to reference Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlogl R, Hinrichsen O (2016) Appl Catal A 505:262–270 Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlogl R, Hinrichsen O (2016) Appl Catal A 505:262–270
31.
go back to reference Wilkinson SK, Van De Water LGA., Miller B, Simmons MJH, Stitt EH, Watson MJ (2016) J Catal 337:208–220CrossRef Wilkinson SK, Van De Water LGA., Miller B, Simmons MJH, Stitt EH, Watson MJ (2016) J Catal 337:208–220CrossRef
32.
go back to reference Moradi GR, Ahmadpour J, Yaripour F, Wang J (2011) Can J Chem Eng 89:108–115CrossRef Moradi GR, Ahmadpour J, Yaripour F, Wang J (2011) Can J Chem Eng 89:108–115CrossRef
33.
34.
go back to reference Pan YX, Kuai P, Liu Y, Ge Q, Liu CJ (2010) Energy Environ Sci 3:1322–1325CrossRef Pan YX, Kuai P, Liu Y, Ge Q, Liu CJ (2010) Energy Environ Sci 3:1322–1325CrossRef
35.
go back to reference Chiavassa DL, Collins SE, Bonivardi AL, Baltanas MA (2009) Chem Eng J 150:204–212CrossRef Chiavassa DL, Collins SE, Bonivardi AL, Baltanas MA (2009) Chem Eng J 150:204–212CrossRef
37.
go back to reference Joo OS, Jung KD, Moon I, Rozovskii AY, Lin GI, Han SH, Uhm SJ (1999) Ind Eng Chem Res 38:1808–1812CrossRef Joo OS, Jung KD, Moon I, Rozovskii AY, Lin GI, Han SH, Uhm SJ (1999) Ind Eng Chem Res 38:1808–1812CrossRef
38.
39.
go back to reference Sales FG, Maranhão LCA, Pereira JAFR, Abreu CAM (2005) Braz J Chem Eng 22:443–452CrossRef Sales FG, Maranhão LCA, Pereira JAFR, Abreu CAM (2005) Braz J Chem Eng 22:443–452CrossRef
40.
Metadata
Title
Preparation and Characterization of Ni5Ga3 for Methanol Formation via CO2 Hydrogenation
Authors
Chao Lung Chiang
Kuen Song Lin
Yan Gu Lin
Publication date
10-04-2017
Publisher
Springer US
Published in
Topics in Catalysis / Issue 9-11/2017
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-017-0771-7

Other articles of this Issue 9-11/2017

Topics in Catalysis 9-11/2017 Go to the issue

Premium Partners