Skip to main content
Top
Published in: Journal of Nanoparticle Research 6/2008

01-08-2008 | FOCUS ON NANOMANUFACTURING

Preparation of nanoparticles by continuous-flow microfluidics

Authors: Andreas Jahn, Joseph E. Reiner, Wyatt N. Vreeland, Don L. DeVoe, Laurie E. Locascio, Michael Gaitan

Published in: Journal of Nanoparticle Research | Issue 6/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abraham SA et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97CrossRef Abraham SA et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97CrossRef
go back to reference Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937CrossRef Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937CrossRef
go back to reference Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97CrossRef Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97CrossRef
go back to reference Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82(3):364–366CrossRef Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82(3):364–366CrossRef
go back to reference Ayyagari AL et al (2006) Long-circulating liposomal contrast agents for magnetic resonance imaging. Mag Reson Med 55(5):1023–1029CrossRef Ayyagari AL et al (2006) Long-circulating liposomal contrast agents for magnetic resonance imaging. Mag Reson Med 55(5):1023–1029CrossRef
go back to reference Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019CrossRef Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019CrossRef
go back to reference Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215CrossRef Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215CrossRef
go back to reference Brazhnik KP et al (2005) Directed growth of pure phosphatidylcholine nanotubes in microfluidic channels. Langmuir 21(23):10814–10817CrossRef Brazhnik KP et al (2005) Directed growth of pure phosphatidylcholine nanotubes in microfluidic channels. Langmuir 21(23):10814–10817CrossRef
go back to reference Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861CrossRef Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861CrossRef
go back to reference Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3(2):199–201CrossRef Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3(2):199–201CrossRef
go back to reference Christopher GF et al (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336CrossRef Christopher GF et al (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336CrossRef
go back to reference Cottam BF et al (2007) Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab Chip 7(2):167–169CrossRef Cottam BF et al (2007) Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab Chip 7(2):167–169CrossRef
go back to reference Crosasso P et al (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63(1–2):19–30CrossRef Crosasso P et al (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63(1–2):19–30CrossRef
go back to reference Dittrich PS et al (2006) On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab Chip 6(4):488–493CrossRef Dittrich PS et al (2006) On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab Chip 6(4):488–493CrossRef
go back to reference Edel JB et al (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137 Edel JB et al (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137
go back to reference Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRef Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRef
go back to reference Gulsen D, Li CC, Chauhan A (2005) Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 30(12):1071–1080CrossRef Gulsen D, Li CC, Chauhan A (2005) Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 30(12):1071–1080CrossRef
go back to reference Hung LH et al (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6(2):174–178CrossRef Hung LH et al (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6(2):174–178CrossRef
go back to reference Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22(2):197–224CrossRef Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22(2):197–224CrossRef
go back to reference Jahn A et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23(11):6289–6293CrossRef Jahn A et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23(11):6289–6293CrossRef
go back to reference Jahn A et al (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675CrossRef Jahn A et al (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675CrossRef
go back to reference Jensen KF (2001) Microreaction engineering - is small better? Chem Eng Sci 56(2):293–303CrossRef Jensen KF (2001) Microreaction engineering - is small better? Chem Eng Sci 56(2):293–303CrossRef
go back to reference Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51CrossRef Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51CrossRef
go back to reference Kelly BT et al (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun (18):1773–1788 Kelly BT et al (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun (18):1773–1788
go back to reference Khan SA et al (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611CrossRef Khan SA et al (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611CrossRef
go back to reference Kikuchi H et al (1999) Gene delivery using liposome technology. J Control Release 62(1–2):269–277CrossRef Kikuchi H et al (1999) Gene delivery using liposome technology. J Control Release 62(1–2):269–277CrossRef
go back to reference Knight JB et al (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866CrossRef Knight JB et al (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866CrossRef
go back to reference Kremer JMH et al (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16(17):3932–3935CrossRef Kremer JMH et al (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16(17):3932–3935CrossRef
go back to reference Kuribayashi K et al (2006) Electroformation of giant liposomes in microfluidic channels. Meas Sci Technol 17(12):3121–3126CrossRef Kuribayashi K et al (2006) Electroformation of giant liposomes in microfluidic channels. Meas Sci Technol 17(12):3121–3126CrossRef
go back to reference LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854CrossRef LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854CrossRef
go back to reference Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256(1):1–11 Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256(1):1–11
go back to reference Lin XZ, Terepka AD, Hong Y (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4(11):2227–2232CrossRef Lin XZ, Terepka AD, Hong Y (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4(11):2227–2232CrossRef
go back to reference Lin Y-C, Li M, Wang Y-T, Lai T-H, Chaing J-T, Huang K-S (2005) A new method for the preparation of self-assembled phospholipid microtubes using microfluidic technology. Seoul, Korea, pp 1592–1595 Lin Y-C, Li M, Wang Y-T, Lai T-H, Chaing J-T, Huang K-S (2005) A new method for the preparation of self-assembled phospholipid microtubes using microfluidic technology. Seoul, Korea, pp 1592–1595
go back to reference Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):Art. No. 054503 Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):Art. No. 054503
go back to reference Litzinger DC et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta Biomembr 1190(1):99–107CrossRef Litzinger DC et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta Biomembr 1190(1):99–107CrossRef
go back to reference Luan WL et al (2007) Open-to-air synthesis of monodisperse CdSe nanocrystals via microfluidic reaction and its kinetics. Nanotechnology 18(17):175603 (6 pp) Luan WL et al (2007) Open-to-air synthesis of monodisperse CdSe nanocrystals via microfluidic reaction and its kinetics. Nanotechnology 18(17):175603 (6 pp)
go back to reference Mamot C et al (2003) Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 6(5):271–279CrossRef Mamot C et al (2003) Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 6(5):271–279CrossRef
go back to reference Martina MS et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127(30):10676–10685CrossRef Martina MS et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127(30):10676–10685CrossRef
go back to reference Maulucci G et al (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88(5):3545–3550CrossRef Maulucci G et al (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88(5):3545–3550CrossRef
go back to reference Mayer LD et al (2000) Designing liposomal anticancer drug formulations for specific therapeutic applications. J Liposome Res 10(2–3):99–115CrossRef Mayer LD et al (2000) Designing liposomal anticancer drug formulations for specific therapeutic applications. J Liposome Res 10(2–3):99–115CrossRef
go back to reference Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446CrossRef Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446CrossRef
go back to reference Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRef Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRef
go back to reference Mulder WJM et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164CrossRef Mulder WJM et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164CrossRef
go back to reference Nakamura H et al (2004) Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis. Lab Chip 4(3):237–240CrossRef Nakamura H et al (2004) Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis. Lab Chip 4(3):237–240CrossRef
go back to reference Pavelic Z et al (2005) Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release 106(1–2):34–43CrossRef Pavelic Z et al (2005) Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release 106(1–2):34–43CrossRef
go back to reference Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117CrossRef Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117CrossRef
go back to reference Ramachandran S et al (2006) Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence Imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir 22(19):8156–8162CrossRef Ramachandran S et al (2006) Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence Imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir 22(19):8156–8162CrossRef
go back to reference Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784CrossRef Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784CrossRef
go back to reference Sadava D, Coleman A, Kane SF (2002) Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res 12(4):301–309CrossRef Sadava D, Coleman A, Kane SF (2002) Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res 12(4):301–309CrossRef
go back to reference Saito R et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389CrossRef Saito R et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389CrossRef
go back to reference Schmid MH, Korting HC (1994) Liposomes - a drug carrier system for topical treatment in dermatology. Crit Rev Ther Drug Carrier Syst 11(2–3):97–118 Schmid MH, Korting HC (1994) Liposomes - a drug carrier system for topical treatment in dermatology. Crit Rev Ther Drug Carrier Syst 11(2–3):97–118
go back to reference Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321CrossRef Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321CrossRef
go back to reference Sounart TL et al (2007) Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip 7(7):908–915CrossRef Sounart TL et al (2007) Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip 7(7):908–915CrossRef
go back to reference Stroock AD et al (2002) Chaotic mixer for microchannels. Science 295(5555):647–651CrossRef Stroock AD et al (2002) Chaotic mixer for microchannels. Science 295(5555):647–651CrossRef
go back to reference Sugiura S et al (2001a) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566CrossRef Sugiura S et al (2001a) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566CrossRef
go back to reference Sugiura S et al (2001b) Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification. J Chem Eng Japan 34(6):757–765CrossRef Sugiura S et al (2001b) Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification. J Chem Eng Japan 34(6):757–765CrossRef
go back to reference Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRef Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRef
go back to reference Templeton NS et al (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15(7):647–652CrossRef Templeton NS et al (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15(7):647–652CrossRef
go back to reference Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRef Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRef
go back to reference Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 13(11):3843–3858CrossRef Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 13(11):3843–3858CrossRef
go back to reference Wagner A et al (2002) The crossflow injection technique: an improvement of the ethanol injection method. J Liposome Res 12(3):259–270CrossRef Wagner A et al (2002) The crossflow injection technique: an improvement of the ethanol injection method. J Liposome Res 12(3):259–270CrossRef
go back to reference Wang HZ et al (2004) Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. Chem Commun (1):48–49 Wang HZ et al (2004) Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. Chem Commun (1):48–49
go back to reference Wang HZ et al (2002) Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun (14):1462–1463 Wang HZ et al (2002) Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun (14):1462–1463
go back to reference Wu L et al (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89(14):Art. No. 144106 Wu L et al (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89(14):Art. No. 144106
Metadata
Title
Preparation of nanoparticles by continuous-flow microfluidics
Authors
Andreas Jahn
Joseph E. Reiner
Wyatt N. Vreeland
Don L. DeVoe
Laurie E. Locascio
Michael Gaitan
Publication date
01-08-2008
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 6/2008
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-007-9340-5

Other articles of this Issue 6/2008

Journal of Nanoparticle Research 6/2008 Go to the issue

Premium Partners