Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass for Reducing Sugar Production

Authors : Noor Idayu Nashiruddin, Nor Hasmaliana Abdul Manas, Roshanida A. Rahman, Nur Izyan Wan Azelee, Daniel Joe Dailin, Shalyda Md Shaarani

Published in: Valorisation of Agro-industrial Residues – Volume II: Non-Biological Approaches

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conversion of lignocellulosic biomass into reducing sugar has contributed to an alternative use of lignocellulose source, especially in the production of value-added products such as amino acids, biofuels, and vitamins. In the bioconversion process, pretreatment of lignocellulosic biomass is important to enhance the accessibility of enzyme hydrolysis, thus increasing the yield of reducing sugar. Lignocellulosic biomass has a very complex arrangement of structure that needs a proper study in pretreatment and enzymatic hydrolysis process to obtain an optimum yield of reducing sugar. This chapter discusses chemical and enzymatic pretreatment methods that are commonly applied to effectively modify the chemical structures of lignocellulosic biomass. Acid pretreatment using dilute sulfuric acid (H2SO4) is the most commonly employed for chemical pretreatment while sodium hydroxide (NaOH) is the most commonly applied for alkaline pretreatment because of its ability to delignify biomass. Then, enzymatic hydrolysis of lignocellulosic biomass for the production of reducing sugar is discussed in detail. The kinetics and optimization of hydrolysis which are the key parameters that determine the yields of reducing sugar are also presented. The right pretreatment method combined with an efficient hydrolysis process will ensure successful conversion of lignocellulosic biomass into reducing sugar, thus providing a sustainable production of reducing sugar from biomass for various applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M, Nergo MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefPubMed Alvira P, Tomás-Pejó E, Ballesteros M, Nergo MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefPubMed
go back to reference Anwar Z, Gulfraz M, Imran M, Asad MJ, Shafi AI, Anwar P, Qureshi R (2012) Optimization of dilute acid pretreatment using response surface methodology for bioethanol production from cellulosic biomass of rice polis. Pak J Bot 44(1):169–176 Anwar Z, Gulfraz M, Imran M, Asad MJ, Shafi AI, Anwar P, Qureshi R (2012) Optimization of dilute acid pretreatment using response surface methodology for bioethanol production from cellulosic biomass of rice polis. Pak J Bot 44(1):169–176
go back to reference Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Enamul Hoque M (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Enamul Hoque M (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef
go back to reference Avila-Lara AI, Camberos-Flores JN, Mendoza-Perez JA, Messina-Fernandez SR, Saldana-Duran CE, Jimenez-Ruiz EI, Sanchez-Herrera LM, Perez-Pimienta JA (2015) Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology. Front Bioeng Biotechnol 3(146):1–10 Avila-Lara AI, Camberos-Flores JN, Mendoza-Perez JA, Messina-Fernandez SR, Saldana-Duran CE, Jimenez-Ruiz EI, Sanchez-Herrera LM, Perez-Pimienta JA (2015) Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology. Front Bioeng Biotechnol 3(146):1–10
go back to reference Baboukani BS, Vossoughi M, Alemzadeh I (2012) Optimisation of dilute acid pretreatment conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw. Biosyst Eng 111:66–174 Baboukani BS, Vossoughi M, Alemzadeh I (2012) Optimisation of dilute acid pretreatment conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw. Biosyst Eng 111:66–174
go back to reference Badal CS (2003) Hemicellulose conversion. J Ind Microbiol Biotechnol 30:279–291CrossRef Badal CS (2003) Hemicellulose conversion. J Ind Microbiol Biotechnol 30:279–291CrossRef
go back to reference Baley (1989) Enzyme kinetics of cellulose hydrolysis. Biochem J 262:1001–1002CrossRef Baley (1989) Enzyme kinetics of cellulose hydrolysis. Biochem J 262:1001–1002CrossRef
go back to reference Ballesteros I, Negro M, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam explosion pretreated wheat straw. Appl Biochem Biotechnol 130:278–288CrossRef Ballesteros I, Negro M, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam explosion pretreated wheat straw. Appl Biochem Biotechnol 130:278–288CrossRef
go back to reference Banerjee S, Mudliar S, Giri B, Sarpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77–93CrossRef Banerjee S, Mudliar S, Giri B, Sarpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77–93CrossRef
go back to reference Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modelling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRefPubMed Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modelling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRefPubMed
go back to reference Barakat A, de Vries H, Rouao X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour Technol 134:362–373CrossRefPubMed Barakat A, de Vries H, Rouao X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour Technol 134:362–373CrossRefPubMed
go back to reference Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRefPubMed Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRefPubMed
go back to reference Bobleter O, Niesner R, Rohr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20:2083–2093CrossRef Bobleter O, Niesner R, Rohr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20:2083–2093CrossRef
go back to reference Cai D, Li P, Luo Z, Qin P, Chen C, Wang Y, Wang Z, Tan T (2016) Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresour Technol 211:117–124CrossRefPubMed Cai D, Li P, Luo Z, Qin P, Chen C, Wang Y, Wang Z, Tan T (2016) Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresour Technol 211:117–124CrossRefPubMed
go back to reference Carillo F, Lis MJ, Colom X, López-Mesas M, Valldeperas J (2005) Effect of alkali pretreatment on cellulose hydrolysis of wheat straw: kinetic study. Process Biochem 40:3360–3364CrossRef Carillo F, Lis MJ, Colom X, López-Mesas M, Valldeperas J (2005) Effect of alkali pretreatment on cellulose hydrolysis of wheat straw: kinetic study. Process Biochem 40:3360–3364CrossRef
go back to reference Carvalho ML, Sousa RJ, Rodríguez-Zúñiga UF, Suarez CAG, Rodrigues DS, Giordano RC, Giordano RLC (2013) Kinetic study of the enzymatic hydrolysis of sugarcane bagasse. Braz J Chem Eng 30(3):437–447CrossRef Carvalho ML, Sousa RJ, Rodríguez-Zúñiga UF, Suarez CAG, Rodrigues DS, Giordano RC, Giordano RLC (2013) Kinetic study of the enzymatic hydrolysis of sugarcane bagasse. Braz J Chem Eng 30(3):437–447CrossRef
go back to reference Chapla D, Pandit P, Shah A (2011) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotic. Bioresour Technol 15:215–221 Chapla D, Pandit P, Shah A (2011) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotic. Bioresour Technol 15:215–221
go back to reference Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Springer, Beijing, pp 25–71CrossRef Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Springer, Beijing, pp 25–71CrossRef
go back to reference Chen M, Xia LM, Xue PJ (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegrad 59:85–89CrossRef Chen M, Xia LM, Xue PJ (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegrad 59:85–89CrossRef
go back to reference Chen WH, Pen BL, Yu C, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute acid and steam explosion for bioethanol production. Bioresour Technol 102:2916–2924CrossRefPubMed Chen WH, Pen BL, Yu C, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute acid and steam explosion for bioethanol production. Bioresour Technol 102:2916–2924CrossRefPubMed
go back to reference Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(8):1–10PubMedPubMedCentral Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(8):1–10PubMedPubMedCentral
go back to reference Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour Technol 59:81–96CrossRef Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour Technol 59:81–96CrossRef
go back to reference Chittibabu S, Saseetharan MK, Rajendran K, Santhanamuthu (2012) Optimization of alkali pretreatment and enzymatic hydrolysis of banana pseudostem for ethanol production by RSM. In: International conference on advanced in engineering, science and management, 30–31 March. India. IEEE, pp 90–94 Chittibabu S, Saseetharan MK, Rajendran K, Santhanamuthu (2012) Optimization of alkali pretreatment and enzymatic hydrolysis of banana pseudostem for ethanol production by RSM. In: International conference on advanced in engineering, science and management, 30–31 March. India. IEEE, pp 90–94
go back to reference Choi W, Oh K, Park J, Lee J (2014) Continuous sodium hydroxide catalyzed pretreatment of empty fruit bunches (EFB) by continuous twin-screw-driven reactor (CTSR). J Chem Technol Biotechnol 89(2):209–296 Choi W, Oh K, Park J, Lee J (2014) Continuous sodium hydroxide catalyzed pretreatment of empty fruit bunches (EFB) by continuous twin-screw-driven reactor (CTSR). J Chem Technol Biotechnol 89(2):209–296
go back to reference Chrastil J (1988) Enzymic product formation curves with the normal or diffusion limited reaction mechanism and in the presence of substrate receptors. Int J Biochem 20(7):683–693CrossRefPubMed Chrastil J (1988) Enzymic product formation curves with the normal or diffusion limited reaction mechanism and in the presence of substrate receptors. Int J Biochem 20(7):683–693CrossRefPubMed
go back to reference Cotano F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Procedia 82:389–394CrossRef Cotano F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Procedia 82:389–394CrossRef
go back to reference Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Mohd Aripin A (2014) Analysis of the chemical composition and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. J Appl Sci 14(12):1355–1358CrossRef Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Mohd Aripin A (2014) Analysis of the chemical composition and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. J Appl Sci 14(12):1355–1358CrossRef
go back to reference Dussan KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438 Dussan KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438
go back to reference El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871CrossRef El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871CrossRef
go back to reference Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Silva EGP, Portugal LA, Reis PS, Souza AS, Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186CrossRefPubMed Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Silva EGP, Portugal LA, Reis PS, Souza AS, Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186CrossRefPubMed
go back to reference Ferreira S, Duarte AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 45:192–200CrossRef Ferreira S, Duarte AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 45:192–200CrossRef
go back to reference Ganesh DS, Min-Kyu O (2015) Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 5:97171–97179CrossRef Ganesh DS, Min-Kyu O (2015) Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 5:97171–97179CrossRef
go back to reference Goncalves FA, Ruiz HA, Santos ES, Teixeira JA, de Macedo GR (2015) Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind Crop Prod 77:1–12CrossRef Goncalves FA, Ruiz HA, Santos ES, Teixeira JA, de Macedo GR (2015) Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind Crop Prod 77:1–12CrossRef
go back to reference Gottschalk LMF, Oliveira RO, Bon EPS (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Tricoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78CrossRef Gottschalk LMF, Oliveira RO, Bon EPS (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Tricoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78CrossRef
go back to reference Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383CrossRefPubMed Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383CrossRefPubMed
go back to reference Guan X, Yao H (2008) Optimization of viscozyme L-assisted extraction of Oat Bran protein using response surface methodology. Food Chem 106(1):345–351CrossRef Guan X, Yao H (2008) Optimization of viscozyme L-assisted extraction of Oat Bran protein using response surface methodology. Food Chem 106(1):345–351CrossRef
go back to reference Hong E, Kim D, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumaniae AJ 4. Biomass Bioenergy 77:177–185CrossRef Hong E, Kim D, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumaniae AJ 4. Biomass Bioenergy 77:177–185CrossRef
go back to reference Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRef Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRef
go back to reference Hsu TGL, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913CrossRefPubMed Hsu TGL, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913CrossRefPubMed
go back to reference Idrees M, Adnan A, Sheikh S, Qureshic FA (2013) Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI J 12:30–40PubMedPubMedCentral Idrees M, Adnan A, Sheikh S, Qureshic FA (2013) Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI J 12:30–40PubMedPubMedCentral
go back to reference Iwona C, Grzegorz B, Hanwu L (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu Y (ed) Green biomass pretreatment for biofuel production. Springer, New York, pp 87–106 Iwona C, Grzegorz B, Hanwu L (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu Y (ed) Green biomass pretreatment for biofuel production. Springer, New York, pp 87–106
go back to reference Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84–86:81–96CrossRefPubMed Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84–86:81–96CrossRefPubMed
go back to reference Jeong SY, Lee JW (2015) Hydrothermal pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologie. Elsevier, India, pp 61–74CrossRef Jeong SY, Lee JW (2015) Hydrothermal pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologie. Elsevier, India, pp 61–74CrossRef
go back to reference Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from trametes hirsute and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100:5155–5161CrossRefPubMed Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from trametes hirsute and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100:5155–5161CrossRefPubMed
go back to reference Kadam KL, Rydholm EC, McMillan JD (2004) Development and of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechol Prog 20:698–705CrossRef Kadam KL, Rydholm EC, McMillan JD (2004) Development and of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechol Prog 20:698–705CrossRef
go back to reference Karunanithy C, Muthukumarappan K (2011) Optimization of alkali, big bluestem particle size, and extruder parameters for maximum enzymatic sugar recovery using response surface methodology. Bioresources 6(1):762–790 Karunanithy C, Muthukumarappan K (2011) Optimization of alkali, big bluestem particle size, and extruder parameters for maximum enzymatic sugar recovery using response surface methodology. Bioresources 6(1):762–790
go back to reference Kaur S, Sarkar C, Sharma HK, Singh C (2009) Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology. Food Bioprocess Technol 2:96–100CrossRef Kaur S, Sarkar C, Sharma HK, Singh C (2009) Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology. Food Bioprocess Technol 2:96–100CrossRef
go back to reference Kim I, Han J-I (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 46:210–217CrossRef Kim I, Han J-I (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 46:210–217CrossRef
go back to reference Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48CrossRefPubMed Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48CrossRefPubMed
go back to reference Kshirsagar SD, Wagmare OR, Loni PC, Patil SA, Govindwar SP (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis condition by response surface methodology. RSC Adv 5:46525–46533CrossRef Kshirsagar SD, Wagmare OR, Loni PC, Patil SA, Govindwar SP (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis condition by response surface methodology. RSC Adv 5:46525–46533CrossRef
go back to reference Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulose on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213CrossRefPubMed Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulose on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213CrossRefPubMed
go back to reference Kumar P, Barrett DM, Delwiches MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiches MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
go back to reference Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of costal Bermuda grass for increased enzyme hydrolysis. Bioresour Technol 100:6364–6441 Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of costal Bermuda grass for increased enzyme hydrolysis. Bioresour Technol 100:6364–6441
go back to reference Lee JM, Jameel H, Venditti R (2010) Effect of Ozone and autohydrolysis pretreatment on enzymatic digestibility of coastal Bermuda grass. Bioresources 5(2):1084–1101 Lee JM, Jameel H, Venditti R (2010) Effect of Ozone and autohydrolysis pretreatment on enzymatic digestibility of coastal Bermuda grass. Bioresources 5(2):1084–1101
go back to reference Lei H, Cybulska I, Julson J (2013) Hydrothermal pretreatment of lignocellulosic biomass and kinetics. J Sustain Bioenergy Syst 3:250–259CrossRef Lei H, Cybulska I, Julson J (2013) Hydrothermal pretreatment of lignocellulosic biomass and kinetics. J Sustain Bioenergy Syst 3:250–259CrossRef
go back to reference Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRef Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRef
go back to reference Li C, Yoshimoto M, Tsukuda N, Fukunaga K, Nakao K (2004) A kinetic study on enzymatic hydrolysis of a variety of pulps for its enhancement with continuous ultrasonic irradiation. Biochem Eng J 19(2):155–164CrossRef Li C, Yoshimoto M, Tsukuda N, Fukunaga K, Nakao K (2004) A kinetic study on enzymatic hydrolysis of a variety of pulps for its enhancement with continuous ultrasonic irradiation. Biochem Eng J 19(2):155–164CrossRef
go back to reference Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef
go back to reference Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification, and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRefPubMed Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification, and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRefPubMed
go back to reference Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn stover after pretreatment with dilute sulphuric acid. Chem Eng Technol 30(7):938–944CrossRef Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn stover after pretreatment with dilute sulphuric acid. Chem Eng Technol 30(7):938–944CrossRef
go back to reference Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Anna LMMS, Castro AM, Driemeier CE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46:1196–1201CrossRef Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Anna LMMS, Castro AM, Driemeier CE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46:1196–1201CrossRef
go back to reference Maitan-Alfenas GP, Visser EM, Guimaraes VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRef Maitan-Alfenas GP, Visser EM, Guimaraes VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRef
go back to reference Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind Crop Prod 32(3):175–201CrossRef Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind Crop Prod 32(3):175–201CrossRef
go back to reference Malaysia Palm Oil Board (MPOB) (2011) Oil palm statistic, 21, pp 131 Malaysia Palm Oil Board (MPOB) (2011) Oil palm statistic, 21, pp 131
go back to reference Manimaran A, Vijai KG, Finola EC, Maria GT (2013) Enzymatic saccharification of lignocellulosic biomass. In Gupta VK (eds) Laboratory protocols in fungal biology: current methods in fungal biology, pp 475–481 Manimaran A, Vijai KG, Finola EC, Maria GT (2013) Enzymatic saccharification of lignocellulosic biomass. In Gupta VK (eds) Laboratory protocols in fungal biology: current methods in fungal biology, pp 475–481
go back to reference Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432CrossRef Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432CrossRef
go back to reference McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkaline pretreatment. Bioresour Technol 101(17):6718–6727CrossRefPubMed McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkaline pretreatment. Bioresour Technol 101(17):6718–6727CrossRefPubMed
go back to reference Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef
go back to reference Mohamad Said KA, Mohamed Amin MA (2015) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Proc Eng 2(1):8–17 Mohamad Said KA, Mohamed Amin MA (2015) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Proc Eng 2(1):8–17
go back to reference Mohd Sukri SS, Rahman RA, Md Illias R, Yaakob H (2014) Optimization of alkaline pretreatment condition of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Rom Biotechnol Lett 19(1):9006–9018 Mohd Sukri SS, Rahman RA, Md Illias R, Yaakob H (2014) Optimization of alkaline pretreatment condition of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Rom Biotechnol Lett 19(1):9006–9018
go back to reference Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRef Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRef
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefPubMed Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefPubMed
go back to reference Nigam PS, Gupta N, Anthwal A (2009) Pretreatment of agro-industrial residues. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer, The Hague, pp 13–33CrossRef Nigam PS, Gupta N, Anthwal A (2009) Pretreatment of agro-industrial residues. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer, The Hague, pp 13–33CrossRef
go back to reference Nlewen KC, Thrash J (2010) Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresour Technol 101:5426–5430CrossRef Nlewen KC, Thrash J (2010) Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresour Technol 101:5426–5430CrossRef
go back to reference Pandiyan K, Tiwari R, Singh S, Pawan KSN, Rana S, Arora A, Singh SB, Lata N (2014) Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. using response surface methodology. Hindawi Publishing Corporation, 2014, pp 1–14 Pandiyan K, Tiwari R, Singh S, Pawan KSN, Rana S, Arora A, Singh SB, Lata N (2014) Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. using response surface methodology. Hindawi Publishing Corporation, 2014, pp 1–14
go back to reference Parameswaran B, Ashok P (2015) Introduction: lignocellulosic biomass. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 3–6 Parameswaran B, Ashok P (2015) Introduction: lignocellulosic biomass. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 3–6
go back to reference Pratto B, de Souza RB, Sousa RJ, da Cruz AJ (2016) Enzymatic hydrolysis of pretreated sugarcane straw: kinetic study and semi-mechanistic modelling. Appl Biochem Biotechnol 178:1430–1444CrossRefPubMed Pratto B, de Souza RB, Sousa RJ, da Cruz AJ (2016) Enzymatic hydrolysis of pretreated sugarcane straw: kinetic study and semi-mechanistic modelling. Appl Biochem Biotechnol 178:1430–1444CrossRefPubMed
go back to reference Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 4:7346–7353CrossRef Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 4:7346–7353CrossRef
go back to reference Rabemanolontsoa H, Saka S (2016) Various pretreatment of lignocellulosic. Bioresour Technol 199:83081CrossRef Rabemanolontsoa H, Saka S (2016) Various pretreatment of lignocellulosic. Bioresour Technol 199:83081CrossRef
go back to reference Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMed Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMed
go back to reference Raveendran S, Ashok P, Parameswaran B (2015) Alkaline pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 51–60 Raveendran S, Ashok P, Parameswaran B (2015) Alkaline pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 51–60
go back to reference Rawat R, Kumbhar BK, Tewari L (2013) Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Ind Crop Prod 44:220–226CrossRef Rawat R, Kumbhar BK, Tewari L (2013) Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Ind Crop Prod 44:220–226CrossRef
go back to reference Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a SemiPilot reactor. Ind Crop Prod 17:171–176CrossRef Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a SemiPilot reactor. Ind Crop Prod 17:171–176CrossRef
go back to reference Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312CrossRef Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312CrossRef
go back to reference Ruangmee A, Sangwichien C (2013) Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Convers Manag 73:381–388CrossRef Ruangmee A, Sangwichien C (2013) Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Convers Manag 73:381–388CrossRef
go back to reference Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–31CrossRef Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–31CrossRef
go back to reference Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef
go back to reference Saini JK, Anurag RK, Arya A, Kumbhar BK, Tewari L (2012) Optimization of saccharification of sweet sorghum bagasse using response surface methodology. Ind Crop Prod 4:211–219 Saini JK, Anurag RK, Arya A, Kumbhar BK, Tewari L (2012) Optimization of saccharification of sweet sorghum bagasse using response surface methodology. Ind Crop Prod 4:211–219
go back to reference Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–195CrossRefPubMed Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–195CrossRefPubMed
go back to reference Selig MJ, Viamajala S, Decker SR, Tuker MP, Himmel ME (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339CrossRefPubMed Selig MJ, Viamajala S, Decker SR, Tuker MP, Himmel ME (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339CrossRefPubMed
go back to reference Shawkataly HPAK, Mohamed SA, Abdul Kadir MO (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. Bioresources 1(2):220–232 Shawkataly HPAK, Mohamed SA, Abdul Kadir MO (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. Bioresources 1(2):220–232
go back to reference Singh A, Bishnoi NR (2011a) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101CrossRefPubMed Singh A, Bishnoi NR (2011a) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101CrossRefPubMed
go back to reference Singh A, Bishnoi NR (2011b) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101CrossRefPubMed Singh A, Bishnoi NR (2011b) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101CrossRefPubMed
go back to reference Sousa RJ, Carvalho ML, Giordano RLC, Giordano RC (2011) Recent trends in the modelling of cellulose hydrolysis. Braz J Chem Eng 28:545–564CrossRef Sousa RJ, Carvalho ML, Giordano RLC, Giordano RC (2011) Recent trends in the modelling of cellulose hydrolysis. Braz J Chem Eng 28:545–564CrossRef
go back to reference Suhas, Gupta VK, Carrott PJM, Randhir S, Monika C, Sarita K (2016) Cellulose: a review as natural, modified, and activated carbon adsorbent. Bioresour Technol 216:1066–1076CrossRefPubMed Suhas, Gupta VK, Carrott PJM, Randhir S, Monika C, Sarita K (2016) Cellulose: a review as natural, modified, and activated carbon adsorbent. Bioresour Technol 216:1066–1076CrossRefPubMed
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMed Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMed
go back to reference Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and Bermuda grass for ethanol production. Bioresour Technol 96(14):1599–1606CrossRefPubMed Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and Bermuda grass for ethanol production. Bioresour Technol 96(14):1599–1606CrossRefPubMed
go back to reference Sun N, Rodríguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421CrossRef Sun N, Rodríguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421CrossRef
go back to reference Taj S, Munawar AM, Shafiullah K (2007) Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci 44(2):129–144 Taj S, Munawar AM, Shafiullah K (2007) Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci 44(2):129–144
go back to reference Thirmal C, Dahman Y (2012) Comparison of existing pretreatment, saccharification, and fermentation process for butanol production from agricultural residues. Can J Chem Eng 90:745–761CrossRef Thirmal C, Dahman Y (2012) Comparison of existing pretreatment, saccharification, and fermentation process for butanol production from agricultural residues. Can J Chem Eng 90:745–761CrossRef
go back to reference Timung R, Mohan M, Chilukoti B, Samsal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 8:9–18CrossRef Timung R, Mohan M, Chilukoti B, Samsal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 8:9–18CrossRef
go back to reference Umagiliyage AL, Choudary R, Liang Y, Haddock J, Watson DG (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Ind Crop Prod 74:977–986CrossRef Umagiliyage AL, Choudary R, Liang Y, Haddock J, Watson DG (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Ind Crop Prod 74:977–986CrossRef
go back to reference Uzunlu N, Hoshun EZ, Bozan B (2014) Optimization of alkaline pretreatment for enzymatic saccharification of poppy stalks. Bioresources 9(2):2824–2834CrossRef Uzunlu N, Hoshun EZ, Bozan B (2014) Optimization of alkaline pretreatment for enzymatic saccharification of poppy stalks. Bioresources 9(2):2824–2834CrossRef
go back to reference Van Wyk JP (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177CrossRefPubMed Van Wyk JP (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177CrossRefPubMed
go back to reference Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances on biobutanol production. Sustain Chem Process 2(15):1–9 Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances on biobutanol production. Sustain Chem Process 2(15):1–9
go back to reference Weerachanchai P, Jan Leong SS, Chang MW, Ching CB, Lee JM (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459CrossRefPubMed Weerachanchai P, Jan Leong SS, Chang MW, Ching CB, Lee JM (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459CrossRefPubMed
go back to reference Wilfred V (2008) Composition and biosynthesis of lignocellulosic biomass. In: Wilfred V (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 89–129 Wilfred V (2008) Composition and biosynthesis of lignocellulosic biomass. In: Wilfred V (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 89–129
go back to reference Xu JL, Cheng JJ, Sharma-Shivappa RR, Burns JC (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuel 24:2113–2119CrossRef Xu JL, Cheng JJ, Sharma-Shivappa RR, Burns JC (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuel 24:2113–2119CrossRef
go back to reference Young HJ, Kyoung HK (2015) Acidic pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 27–50 Young HJ, Kyoung HK (2015) Acidic pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 27–50
go back to reference Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRefPubMed Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRefPubMed
go back to reference Zhao XB, Wang L, Liu DH (2007) Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol 82:1115–1121CrossRef Zhao XB, Wang L, Liu DH (2007) Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol 82:1115–1121CrossRef
go back to reference Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617CrossRefPubMed Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617CrossRefPubMed
Metadata
Title
Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass for Reducing Sugar Production
Authors
Noor Idayu Nashiruddin
Nor Hasmaliana Abdul Manas
Roshanida A. Rahman
Nur Izyan Wan Azelee
Daniel Joe Dailin
Shalyda Md Shaarani
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39208-6_1