Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Principal Component Analysis

Authors : René Vidal, Yi Ma, S. Shankar Sastry

Published in: Generalized Principal Component Analysis

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Principal component analysis (PCA) is the problem of fitting a low-dimensional affine subspace to a set of data points in a high-dimensional space. PCA is, by now, well established in the literature, and has become one of the most useful tools for data modeling, compression, and visualization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The reason for this is that both \(\boldsymbol{u}_{1}\) and its orthogonal complement \(\boldsymbol{u}_{1}^{\perp }\) are invariant subspaces of \(\Sigma _{\boldsymbol{x}}\).
 
2
In the statistical setting, \(\boldsymbol{x}_{j}\) and \(\boldsymbol{y}_{j}\) will be samples of two random variables \(\boldsymbol{x}\) and \(\boldsymbol{y}\), respectively. Then this constraint is equivalent to setting their means to zero.
 
3
From a statistical standpoint, the column vectors of U give the directions in which the data X has the largest variance, whence the name “principal components.”
 
4
In Section 1.​2.​1, we have seen an example in which a similar process can be applied to an ensemble of face images from multiple subspaces, where the first d = 3 principal components are calculated and visualized.
 
5
We leave as an exercise to the reader to calculate the number of parameters needed to specify a d-dimensional subspace in \(\mathbb{R}^{D}\) and then the additional parameters needed to specify a Gaussian distribution inside the subspace.
 
6
Even if one chooses to compare models by their algorithmic complexity, such as the minimum message length (MML) criterion (Wallace and Boulton 1968) (an extension of the Kolmogrov complexity to model selection), a strong connection with the above information-theoretic criteria, such as minimum description length (MDL), can be readily established via Shannon’s optimal coding theory (see (Wallace and Dowe 1999)).
 
7
It can be shown that the nuclear norm is a convex envelope of the rank function for matrices.
 
Literature
go back to reference Akaike, H. (1977). A new look at the statistical model selection. IEEE Transactions on Automatic Control, 16(6), 716–723.MathSciNetMATH Akaike, H. (1977). A new look at the statistical model selection. IEEE Transactions on Automatic Control, 16(6), 716–723.MathSciNetMATH
go back to reference Basri, R., & Jacobs, D. (2003). Lambertian reflection and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218–233.CrossRef Basri, R., & Jacobs, D. (2003). Lambertian reflection and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218–233.CrossRef
go back to reference Beltrami, E. (1873). Sulle funzioni bilineari. Giornale di Mathematiche di Battaglini, 11, 98–106.MATH Beltrami, E. (1873). Sulle funzioni bilineari. Giornale di Mathematiche di Battaglini, 11, 98–106.MATH
go back to reference Cai, J.-F., Candés, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix completion. SIAM Journal of Optimization, 20(4), 1956–1982.MathSciNetCrossRefMATH Cai, J.-F., Candés, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix completion. SIAM Journal of Optimization, 20(4), 1956–1982.MathSciNetCrossRefMATH
go back to reference Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.CrossRef Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.CrossRef
go back to reference Collins, M., Dasgupta, S., & Schapire, R. (2001). A generalization of principal component analysis to the exponential family. In Neural Information Processing Systems (Vol. 14) Collins, M., Dasgupta, S., & Schapire, R. (2001). A generalization of principal component analysis to the exponential family. In Neural Information Processing Systems (Vol. 14)
go back to reference Ding, C., Zha, H., He, X., Husbands, P., & Simon, H. D. (2004). Link analysis: Hubs and authoraties on the world wide web. SIAM Review, 46(2), 256–268.MathSciNetCrossRefMATH Ding, C., Zha, H., He, X., Husbands, P., & Simon, H. D. (2004). Link analysis: Hubs and authoraties on the world wide web. SIAM Review, 46(2), 256–268.MathSciNetCrossRefMATH
go back to reference Donoho, D., & Gavish, M. (2014). The optimal hard threshold for singular values is \(4/\sqrt{3}\). IEEE Transactions on Information Theory, 60(8), 5040–5053.MathSciNetCrossRef Donoho, D., & Gavish, M. (2014). The optimal hard threshold for singular values is \(4/\sqrt{3}\). IEEE Transactions on Information Theory, 60(8), 5040–5053.MathSciNetCrossRef
go back to reference Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211–218.CrossRefMATH Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211–218.CrossRefMATH
go back to reference Gabriel, K. R. (1978). Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society B, 40, 186–196.MathSciNetMATH Gabriel, K. R. (1978). Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society B, 40, 186–196.MathSciNetMATH
go back to reference Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660.CrossRef Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660.CrossRef
go back to reference Hansen, M., & Yu, B. (2001). Model selection and the principle of minimum description length. Journal of American Statistical Association, 96, 746–774.MathSciNetCrossRefMATH Hansen, M., & Yu, B. (2001). Model selection and the principle of minimum description length. Journal of American Statistical Association, 96, 746–774.MathSciNetCrossRefMATH
go back to reference Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.CrossRefMATH Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.CrossRefMATH
go back to reference Hubert, L., Meulman, J., & Heiser, W. (2000). Two purposes for matrix factorization: A historical appraisal. SIAM Review, 42(1), 68–82.MathSciNetCrossRefMATH Hubert, L., Meulman, J., & Heiser, W. (2000). Two purposes for matrix factorization: A historical appraisal. SIAM Review, 42(1), 68–82.MathSciNetCrossRefMATH
go back to reference Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.MATH Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.MATH
go back to reference Jordan, M. (1874). Mémoire sur les formes bilinéaires. Journal de Mathématiques Pures et Appliqués, 19, 35–54.MATH Jordan, M. (1874). Mémoire sur les formes bilinéaires. Journal de Mathématiques Pures et Appliqués, 19, 35–54.MATH
go back to reference Kanatani, K. (1998). Geometric information criterion for model selection. International Journal of Computer Vision (pp. 171–189). Kanatani, K. (1998). Geometric information criterion for model selection. International Journal of Computer Vision (pp. 171–189).
go back to reference Minka, T. (2000). Automatic choice of dimensionality for PCA. In Neural Information Processing Systems (Vol. 13, pp. 598–604). Minka, T. (2000). Automatic choice of dimensionality for PCA. In Neural Information Processing Systems (Vol. 13, pp. 598–604).
go back to reference Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosphical Magazine and Journal of Science, 2, 559–572.CrossRefMATH Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosphical Magazine and Journal of Science, 2, 559–572.CrossRefMATH
go back to reference Recht, B., Fazel, M., & Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.MathSciNetCrossRefMATH Recht, B., Fazel, M., & Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.MathSciNetCrossRefMATH
go back to reference Shabalin, A., & Nobel, A. (2010). Reconstruction of a low-rank matrix in the presence of gaussian noise (pp. 1–34). arXiv preprint 1007.4148 Shabalin, A., & Nobel, A. (2010). Reconstruction of a low-rank matrix in the presence of gaussian noise (pp. 1–34). arXiv preprint 1007.4148
go back to reference Tipping, M., & Bishop, C. (1999b). Probabilistic principal component analysis. Journal of the Royal Statistical Society, 61(3), 611–622.MathSciNetCrossRefMATH Tipping, M., & Bishop, C. (1999b). Probabilistic principal component analysis. Journal of the Royal Statistical Society, 61(3), 611–622.MathSciNetCrossRefMATH
go back to reference Turk, M., & Pentland, A. (1991). Face recognition using eigenfaces. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 586–591). Turk, M., & Pentland, A. (1991). Face recognition using eigenfaces. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 586–591).
go back to reference Wallace, C., & Boulton, D. (1968). An information measure for classification. The Computer Journal, 11, 185–194.CrossRefMATH Wallace, C., & Boulton, D. (1968). An information measure for classification. The Computer Journal, 11, 185–194.CrossRefMATH
go back to reference Wallace, C., & Dowe, D. (1999). Minimum message length and Kolmogrov complexity. The Computer Journal, 42(4), 270–283.CrossRefMATH Wallace, C., & Dowe, D. (1999). Minimum message length and Kolmogrov complexity. The Computer Journal, 42(4), 270–283.CrossRefMATH
Metadata
Title
Principal Component Analysis
Authors
René Vidal
Yi Ma
S. Shankar Sastry
Copyright Year
2016
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87811-9_2