Skip to main content
Top

2021 | OriginalPaper | Chapter

Probabilistic FEM-Analysis for the Retaining Wall of a Deep Excavation at SLS

Authors : Alexandra Ene, Timo Schweckendiek, Horatiu Popa

Published in: 18th International Probabilistic Workshop

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Common practice for design of retaining walls for deep excavations is by using characteristic values for geotechnical parameters—as a cautious estimate—for Serviceability Limit State (SLS) and combined with partial factors for Ultimate Limit State (ULS), as indicated in the current design codes such as the Eurocodes. However, more complex probabilistic approaches are increasing in application in order to provide a more uniform level of reliability, thus reducing the cost of the investment or the risk, or both. Also, in terms of tools and methods for performing the calculations, the Finite Element Method (FEM) is very popular nowadays due accessible computers power and user-friendly specialized software which can provide more realistic model, with affordable calculation effort. The present paper presents a case study of applied full probabilistic analysis of a retaining wall for real project deep excavation in Bucharest city, Romania, by FEM calculation in Plaxis 2D software coupled with Probabilistic Toolkit (PTK) software for reliability calculation. The limit function is set on a target value for the displacements of the retaining wall to allow to design for the SLS, since this is in many cases the governing state for deep excavations in urban areas. Different probability distributions are used for assessing the statistics of the geotechnical parameters and the reliability results obtained through these are discussed. Also, a discussion is made on the necessity of including more specific target reliability values for SLS verification and especially for temporary structures in the design codes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schweckendiek, T. (2006). Structural reliability applied to deep excavations (Master Thesis). Delft University of Technology. Schweckendiek, T. (2006). Structural reliability applied to deep excavations (Master Thesis). Delft University of Technology.
2.
go back to reference Rippi, K., & Teixeira, A. (2016). Reliability-based assessment of a retaining wall using FEM. In Proceedings of the 25th European Young Geotechnical Engineers Conference, Sibiu, Romania. Rippi, K., & Teixeira, A. (2016). Reliability-based assessment of a retaining wall using FEM. In Proceedings of the 25th European Young Geotechnical Engineers Conference, Sibiu, Romania.
3.
go back to reference Roubos, A. A., Steenbergen, R. D., Scheweckendiek, T., & Jonkman, N. S. (2018). Risk-based target reliability indices for quay walls. Structural Safety, 75, 89–109.CrossRef Roubos, A. A., Steenbergen, R. D., Scheweckendiek, T., & Jonkman, N. S. (2018). Risk-based target reliability indices for quay walls. Structural Safety, 75, 89–109.CrossRef
4.
go back to reference Popa, H., Ene, A., Miritoiu, R., Ionescu, I., & Marcu, D. (2018). Back analysis of an embedded retaining wall for a deep excavation in Bucharest. In ce/papers: Special Issue: XVI DECGE 2018 Proceedings of the 16th Danube—European Conference on Geotechnical Engineering, (Vol. 2, pp. 2–3), Skopje, R. Macedonia. Popa, H., Ene, A., Miritoiu, R., Ionescu, I., & Marcu, D. (2018). Back analysis of an embedded retaining wall for a deep excavation in Bucharest. In ce/papers: Special Issue: XVI DECGE 2018 Proceedings of the 16th Danube—European Conference on Geotechnical Engineering, (Vol. 2, pp. 2–3), Skopje, R. Macedonia.
5.
go back to reference Comite Europeen De Normalisation. (2004). EN 1997-1:2004. Eurocode 7: Geotechnical design—Part 1: General rules. Brussels, Belgium. Comite Europeen De Normalisation. (2004). EN 1997-1:2004. Eurocode 7: Geotechnical design—Part 1: General rules. Brussels, Belgium.
6.
go back to reference Ministerul Dezvoltarii Regionale si Turismului. (2011). NP 122:2010. Romanian norm on determining the characteristic and design values for the geotechnical parameters (in Romanian). Romania: Monitorul Oficial al Romaniei. Ministerul Dezvoltarii Regionale si Turismului. (2011). NP 122:2010. Romanian norm on determining the characteristic and design values for the geotechnical parameters (in Romanian). Romania: Monitorul Oficial al Romaniei.
7.
go back to reference Shepheard, C. J., Vardanega, P. J., Holcombe, E. A., Hen-Jones, R., & De Luca, F. (2019). Minding the geotechnical data gap: Appraisal of the variability of key soil parameters for slope stability modelling in Saint Lucia. Bulletin of Engineering Geology and the Environment, 78, 4851–4864.CrossRef Shepheard, C. J., Vardanega, P. J., Holcombe, E. A., Hen-Jones, R., & De Luca, F. (2019). Minding the geotechnical data gap: Appraisal of the variability of key soil parameters for slope stability modelling in Saint Lucia. Bulletin of Engineering Geology and the Environment, 78, 4851–4864.CrossRef
8.
go back to reference Gong, F., Wang, T., & Wang, S. (2019). Inference of the optimal probability distribution model for geotechnical parameters by using Weibull and NID distributions. Journal of Vibroengineering, 21(4), 876–887. Gong, F., Wang, T., & Wang, S. (2019). Inference of the optimal probability distribution model for geotechnical parameters by using Weibull and NID distributions. Journal of Vibroengineering, 21(4), 876–887.
9.
go back to reference Plaxis. (2019). Plaxis 2D Material Models Manual. Plaxis. (2019). Plaxis 2D Material Models Manual.
10.
go back to reference Deltares. (2019). Probabilistic Toolkit Manual. Deltares. (2019). Probabilistic Toolkit Manual.
11.
go back to reference Joint Committee on Structural Safety. (2001). Probabilistic model code (Part 1—Basis of design). Technical University of Denmark. Joint Committee on Structural Safety. (2001). Probabilistic model code (Part 1—Basis of design). Technical University of Denmark.
12.
go back to reference International Organization for Standardization. (2015). ISO 2394:2015. General principles on reliability for structures. ISO. International Organization for Standardization. (2015). ISO 2394:2015. General principles on reliability for structures. ISO.
13.
go back to reference Comite Europeen De Normalisation. (2001). EN 1990:2002. Eurocode 0—Basis of structural design. Brussels, Belgium. Comite Europeen De Normalisation. (2001). EN 1990:2002. Eurocode 0—Basis of structural design. Brussels, Belgium.
14.
go back to reference USACE. (1999). Risk–based analysis in geotechnical engineering for support of planning studies. ETL1110-2-556. United States. USACE. (1999). Risk–based analysis in geotechnical engineering for support of planning studies. ETL1110-2-556. United States.
15.
go back to reference Holický, M. (2012). Optimisation of the target reliability for temporary structures. Civil Engineering and Environmental Systems, 30(2), 87–96.CrossRef Holický, M. (2012). Optimisation of the target reliability for temporary structures. Civil Engineering and Environmental Systems, 30(2), 87–96.CrossRef
16.
go back to reference Vereecken, E., Botte, W., & Caspeele, R. (2019). Reliability based design of temporary structures. In Life-cycle analysis and assessment in civil engineering: Towards an integrated vision (pp. 2615–2622). Vereecken, E., Botte, W., & Caspeele, R. (2019). Reliability based design of temporary structures. In Life-cycle analysis and assessment in civil engineering: Towards an integrated vision (pp. 2615–2622).
17.
go back to reference Caspeele, R., Steenbergen, R., & Taerwe, L. (2013). An adjusted partial factor method for temporary structures compatible with the Eurocode framework. Civil Engineering and Environmental Systems, 30(2), 97–114.CrossRef Caspeele, R., Steenbergen, R., & Taerwe, L. (2013). An adjusted partial factor method for temporary structures compatible with the Eurocode framework. Civil Engineering and Environmental Systems, 30(2), 97–114.CrossRef
Metadata
Title
Probabilistic FEM-Analysis for the Retaining Wall of a Deep Excavation at SLS
Authors
Alexandra Ene
Timo Schweckendiek
Horatiu Popa
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_44