Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 2/2019

01-03-2019

Problems of Modeling Natural and Anthropogenic Processes in the Arctic Zone of the Russian Federation

Author: I. B. Petrov

Published in: Mathematical Models and Computer Simulations | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents a review of publications on the mathematical modeling of the effects produced by natural phenomena on industrial objects in the Arctic zone of the Northern seas of the Russian Federation and those related to addressing the issues of the industrial development of the Arctic shelf. Numerical methods for the solution of the relevant and associated problems are discussed and the calculation results are reported. A list of the most urgent computational problems in developing Russia’s Arctic shelf is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. P. Laverov, V. I. Vasiliev, and A. A. Makosko, “Scientific and technical problems of the Arctic, in Proceedings of the Scientific Session of the General Meeting of Members of the RAS, Dec. 16, 2014 (Nauka, Moscow, 2015). N. P. Laverov, V. I. Vasiliev, and A. A. Makosko, “Scientific and technical problems of the Arctic, in Proceedings of the Scientific Session of the General Meeting of Members of the RAS, Dec. 16, 2014 (Nauka, Moscow, 2015).
2.
go back to reference U. G. Novikov and S. V. Gagulya, “Features of the assessment of hydrocarbon deposits of the Arctic shelf of Russia and their revaluation in accordance with the new classification of reserves,” Neftegaz. Geol. Teor. Prakt. 3 (1), 1–19 (2008). U. G. Novikov and S. V. Gagulya, “Features of the assessment of hydrocarbon deposits of the Arctic shelf of Russia and their revaluation in accordance with the new classification of reserves,” Neftegaz. Geol. Teor. Prakt. 3 (1), 1–19 (2008).
3.
go back to reference B. N. Chetverushkin, A. A. Kuleshov, and E. B. Savenkov, “Supercomputing challenges in mathematical modeling for petroleum industry,” Oil Gas Field Eng., No. 9, 26–35 (2014). B. N. Chetverushkin, A. A. Kuleshov, and E. B. Savenkov, “Supercomputing challenges in mathematical modeling for petroleum industry,” Oil Gas Field Eng., No. 9, 26–35 (2014).
4.
go back to reference A. T. Bekker, Probable Characteristics of Ice Loads on the Structures of the Continental Shelf (Dalnauka, Vladivostok, 2005). A. T. Bekker, Probable Characteristics of Ice Loads on the Structures of the Continental Shelf (Dalnauka, Vladivostok, 2005).
5.
go back to reference J. Weiss, Drift, Deformation and Fracture of Sea Ice. A Perspective across Scales (Springer, Berlin, 2013).CrossRef J. Weiss, Drift, Deformation and Fracture of Sea Ice. A Perspective across Scales (Springer, Berlin, 2013).CrossRef
6.
go back to reference R. V. Goldshtein and N. M. Osipenko, “Questions of the mechanics of the destruction of ice and ice cover in the analysis of ice loads,” Vest. Gaz. Nauki, No. 3 (14), 104–112 (2013). R. V. Goldshtein and N. M. Osipenko, “Questions of the mechanics of the destruction of ice and ice cover in the analysis of ice loads,” Vest. Gaz. Nauki, No. 3 (14), 104–112 (2013).
7.
go back to reference V. E. Borodachev, Ice of the Kara Sea (Gidrometizdat, St. Petersburg, 1998) [in Russian]. V. E. Borodachev, Ice of the Kara Sea (Gidrometizdat, St. Petersburg, 1998) [in Russian].
8.
go back to reference A. Sannikov, V. Miryaha, and I. Petrov, “Numerical simulation of ice strength experiments,” in Proceedings of the 3rd International Scientific Conference on Polar Mechanics, Sept. 27–30, 2016, Vladivostok, Russia, pp. 141–150. A. Sannikov, V. Miryaha, and I. Petrov, “Numerical simulation of ice strength experiments,” in Proceedings of the 3rd International Scientific Conference on Polar Mechanics, Sept. 27–30, 2016, Vladivostok, Russia, pp. 141–150.
9.
go back to reference R. V. Goldshtein and N. M. Osipenko, “Crack resistance and ice cover destruction by icebreakers,” Tr. AANII 391, 137–156 (1986). R. V. Goldshtein and N. M. Osipenko, “Crack resistance and ice cover destruction by icebreakers,” Tr. AANII 391, 137–156 (1986).
10.
go back to reference A. Bolshev, Static and Dynamics of Anchored Floating Structures with Non-Linear Characteristics of Anchored System (Zhdansk, 1993) [in Russian]. A. Bolshev, Static and Dynamics of Anchored Floating Structures with Non-Linear Characteristics of Anchored System (Zhdansk, 1993) [in Russian].
11.
go back to reference V. A. Kulesh, S. A. Ogay, and M. V. Voyloshnikov, “The safety and the effectiveness of ships navigation in ice,” Marine Intell. Technol., No. 1, 11–20 (2013). V. A. Kulesh, S. A. Ogay, and M. V. Voyloshnikov, “The safety and the effectiveness of ships navigation in ice,” Marine Intell. Technol., No. 1, 11–20 (2013).
12.
go back to reference R. E. Gagnon, “Physical modeling experiments to asses the hydrodynamic interaction between floating glacial ice massesad a transiting tanker,” J. Offshore Mech. Arctic Eng. 126, 297–309 (2005).CrossRef R. E. Gagnon, “Physical modeling experiments to asses the hydrodynamic interaction between floating glacial ice massesad a transiting tanker,” J. Offshore Mech. Arctic Eng. 126, 297–309 (2005).CrossRef
13.
go back to reference Z. Liu, J. Amdahl, and S. Loset, “Integreted numerical analysis of an iceberg collisions with a foreship structure,” Marine Struct. 24, 377–395 (2011).CrossRef Z. Liu, J. Amdahl, and S. Loset, “Integreted numerical analysis of an iceberg collisions with a foreship structure,” Marine Struct. 24, 377–395 (2011).CrossRef
14.
go back to reference R. E. Gagnon and J. Wang, “Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel,” Cold Regions Sci. Technol., 1–10 (2012). R. E. Gagnon and J. Wang, “Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel,” Cold Regions Sci. Technol., 1–10 (2012).
15.
go back to reference I. B. Petrov, “The impact of ice and water on offshore structures and coastal zones in the Arctic,” in Scientific-Technical Problems of the Development of the Arctic (Nauka, Moscow, 2015), pp. 230–237 [in Russian]. I. B. Petrov, “The impact of ice and water on offshore structures and coastal zones in the Arctic,” in Scientific-Technical Problems of the Development of the Arctic (Nauka, Moscow, 2015), pp. 230–237 [in Russian].
16.
go back to reference D. Kozlov, “Mathematical model of transverse impact of a solid spherical body on the ice cover surface,” in Proceedings of the 3rd International Scientific Conference on Polar Mechanics, Vladivostok, Russia, Sept. 27–30, 2016, pp. 115–122. D. Kozlov, “Mathematical model of transverse impact of a solid spherical body on the ice cover surface,” in Proceedings of the 3rd International Scientific Conference on Polar Mechanics, Vladivostok, Russia, Sept. 27–30, 2016, pp. 115–122.
17.
go back to reference V. P. Glazyrin and M. U. Orlov, “Ice destruction under shock and explosive loading,” Vychisl. Tehnol. 13 (Spec. Iss. 1), 425–432 (2008). V. P. Glazyrin and M. U. Orlov, “Ice destruction under shock and explosive loading,” Vychisl. Tehnol. 13 (Spec. Iss. 1), 425–432 (2008).
18.
go back to reference A. V. Pogorelova, “Wave resistance of an air-cushion vehicle in unsteady motion over an ice sheet,” J. Appl. Mech. Tech. Phys. 49, 71–79 (2008).CrossRefMATH A. V. Pogorelova, “Wave resistance of an air-cushion vehicle in unsteady motion over an ice sheet,” J. Appl. Mech. Tech. Phys. 49, 71–79 (2008).CrossRefMATH
19.
go back to reference A. Korobin, T. Khabakhpaset, and A. Papin, “Wave propagation along a channel with ice cover,” Eur. J. Mech., B: Fluids 47, 166–175 (2014).MathSciNetCrossRef A. Korobin, T. Khabakhpaset, and A. Papin, “Wave propagation along a channel with ice cover,” Eur. J. Mech., B: Fluids 47, 166–175 (2014).MathSciNetCrossRef
20.
go back to reference I. Sturova and L. Tkacheva, “Oscillations of restricted ice cover under local dynamic action,” in Proceedings of the 3rd International Scientific Conference on Polar Mechanics, Sept. 27–30, 2016, Vladivostok, Russia, pp. 997–1007. I. Sturova and L. Tkacheva, “Oscillations of restricted ice cover under local dynamic action,” in Proceedings of the 3rd International Scientific Conference on Polar Mechanics, Sept. 27–30, 2016, Vladivostok, Russia, pp. 997–1007.
21.
go back to reference A. A. Kuleshov and V. V. Mymrin, “Modelling of a floating ice vibrations as a thin elastic plate,” Mat. Model. 21 (6), 28–40 (2009).MathSciNetMATH A. A. Kuleshov and V. V. Mymrin, “Modelling of a floating ice vibrations as a thin elastic plate,” Mat. Model. 21 (6), 28–40 (2009).MathSciNetMATH
22.
go back to reference A. A. Kuleshov and V. V. Mymrin, “Modeling of floating ice vibrations at plane landing to ice airdromes,” Vychisl. Metody Programm. 11, 7–13 (2010). A. A. Kuleshov and V. V. Mymrin, “Modeling of floating ice vibrations at plane landing to ice airdromes,” Vychisl. Metody Programm. 11, 7–13 (2010).
23.
go back to reference J. Paavilainen and J. Tuhkuri, “Pressure distributions and force chains during simulated ice rubbing against Hoped structures,” Cold Region Sci. Technol. 52, 157–174 (2013).CrossRef J. Paavilainen and J. Tuhkuri, “Pressure distributions and force chains during simulated ice rubbing against Hoped structures,” Cold Region Sci. Technol. 52, 157–174 (2013).CrossRef
24.
go back to reference A. V. Marchenko, “Sea ice hummocking model,” Usp. Mekh., No. 3, 67–129 (2002). A. V. Marchenko, “Sea ice hummocking model,” Usp. Mekh., No. 3, 67–129 (2002).
25.
go back to reference Y. Shinohara, “A redistribution funetion applicable to a dynamic sea ice model,” J. Geophys. Res. 95, 13423–13431 (1999).CrossRef Y. Shinohara, “A redistribution funetion applicable to a dynamic sea ice model,” J. Geophys. Res. 95, 13423–13431 (1999).CrossRef
26.
go back to reference E. Kenneth, “Iceberg drift modeling and validation of applied metocean hindcast data,” Cold Region Sci. Technol. 57, 67–90 (2009).CrossRef E. Kenneth, “Iceberg drift modeling and validation of applied metocean hindcast data,” Cold Region Sci. Technol. 57, 67–90 (2009).CrossRef
27.
go back to reference V. Pavlov, O. Pavlova, and R. Korsnes, “Sea ice fluxes and drift trajectories from potential sources, computed with a statistical sea ice model of the Arctic ocean,” J. Marine Syst. 48, 133–157 (2004).CrossRef V. Pavlov, O. Pavlova, and R. Korsnes, “Sea ice fluxes and drift trajectories from potential sources, computed with a statistical sea ice model of the Arctic ocean,” J. Marine Syst. 48, 133–157 (2004).CrossRef
28.
go back to reference A. Marchenko, “Thermodynamics consolidation and melting of sea ice ridges,” Cold Region Sci. Technol. 52, 278–301 (2008).CrossRef A. Marchenko, “Thermodynamics consolidation and melting of sea ice ridges,” Cold Region Sci. Technol. 52, 278–301 (2008).CrossRef
29.
go back to reference V. V. Aleshin, V. E. Selesnev, V. V. Kobyakov, et al., Numerical Analysis of Strength of Undergrorend Pipelines (Editorial URSS, Moscow, 2003) [in Russian]. V. V. Aleshin, V. E. Selesnev, V. V. Kobyakov, et al., Numerical Analysis of Strength of Undergrorend Pipelines (Editorial URSS, Moscow, 2003) [in Russian].
30.
go back to reference L. Muravieva, “Problem for safety assessment of subsea pipeline with longitudinal buckling,” in Polar Mechanics, Ed. by A. V. Bekker (2016), pp. 537–546. L. Muravieva, “Problem for safety assessment of subsea pipeline with longitudinal buckling,” in Polar Mechanics, Ed. by A. V. Bekker (2016), pp. 537–546.
31.
go back to reference M. N. Kaurkin, R. A. Ibraev, and K. P. Belyaev, “Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming,” Russ. Meteorol. Hydrol. 41, 479–486 (2016).CrossRef M. N. Kaurkin, R. A. Ibraev, and K. P. Belyaev, “Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming,” Russ. Meteorol. Hydrol. 41, 479–486 (2016).CrossRef
32.
go back to reference V. M. Volodin et al., Mathematical Modeling of the Earth System, Collective Monograph, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian]. V. M. Volodin et al., Mathematical Modeling of the Earth System, Collective Monograph, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian].
33.
go back to reference K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, and C. A. S. Tanajura, “A correction method for dynamic model calculations using observational data and its application in oceanography,” Math. Models Comput. Simul. 8, 391–400 (2016).MathSciNetCrossRef K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, and C. A. S. Tanajura, “A correction method for dynamic model calculations using observational data and its application in oceanography,” Math. Models Comput. Simul. 8, 391–400 (2016).MathSciNetCrossRef
35.
go back to reference K. Belyaev, A. Kuleshov, I. Kirchner, and N. Tuchkova, “Numerical experiments with MPI-ESM coupled Atmosphere-Land-Ocean model in conjunction with data assimilations in Arctic Region,” in Proceedings of the International Conference of Computer Methods in Sciences and Engineering ICCMSE-2016, Ed. by T. E. Simos et al., AIP Conf. Proc. 1790, 150005 (2016). K. Belyaev, A. Kuleshov, I. Kirchner, and N. Tuchkova, “Numerical experiments with MPI-ESM coupled Atmosphere-Land-Ocean model in conjunction with data assimilations in Arctic Region,” in Proceedings of the International Conference of Computer Methods in Sciences and Engineering ICCMSE-2016, Ed. by T. E. Simos et al., AIP Conf. Proc. 1790, 150005 (2016).
36.
go back to reference A. A. Samarskii and E. S. Nikolaev, Numerical Methods For Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989). A. A. Samarskii and E. S. Nikolaev, Numerical Methods For Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).
37.
go back to reference G. I. Marchuk, Methods of Numerical Mathematics (Lan, St. Petersburg, 2009; Springer, New York, 1982). G. I. Marchuk, Methods of Numerical Mathematics (Lan, St. Petersburg, 2009; Springer, New York, 1982).
39.
go back to reference K. J. Bathe, Finite Element Procedures (Prentice-Hall, Englewood Cliffs, 2006; Fizmatlit, Moscow, 2010). K. J. Bathe, Finite Element Procedures (Prentice-Hall, Englewood Cliffs, 2006; Fizmatlit, Moscow, 2010).
40.
go back to reference G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods (Nauka, Moscow, 1981) [in Russian].MATH G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods (Nauka, Moscow, 1981) [in Russian].MATH
41.
go back to reference A. Taflove and S. C. Hagness, Computation Electrodynamics (Artech House, Boston, London, 2005).MATH A. Taflove and S. C. Hagness, Computation Electrodynamics (Artech House, Boston, London, 2005).MATH
42.
go back to reference M. I. Epov and V. N. Glinskih, Electromagnetic Logging: Modeling and Inversion (Geo, Novosibirsk, 2005) [in Russian]. M. I. Epov and V. N. Glinskih, Electromagnetic Logging: Modeling and Inversion (Geo, Novosibirsk, 2005) [in Russian].
43.
go back to reference M. N. Berdichevskii, O. N. Zhdanova, and M. S. Zhdanov, Marine Deep Geoelectrics (Nauka, Moscow, 1989) [in Russian]. M. N. Berdichevskii, O. N. Zhdanova, and M. S. Zhdanov, Marine Deep Geoelectrics (Nauka, Moscow, 1989) [in Russian].
44.
go back to reference M. S. Zhdanov, Geophysical Electromagnetic Theory and Methods (Nauch. Mir, Moscow, 2012) [in Russian]. M. S. Zhdanov, Geophysical Electromagnetic Theory and Methods (Nauch. Mir, Moscow, 2012) [in Russian].
45.
go back to reference M. S. Zhdanov, A. Gribenko, and E. Wilson, “Generalized joint inversion of multimodel geophysical data using Gramiam constrains. Geophysical Research constraints,” Geophys. Res. Lett. 39, L09301 (2012).CrossRef M. S. Zhdanov, A. Gribenko, and E. Wilson, “Generalized joint inversion of multimodel geophysical data using Gramiam constrains. Geophysical Research constraints,” Geophys. Res. Lett. 39, L09301 (2012).CrossRef
46.
go back to reference S. Sh. Bimuratov and S. I. Kabanikhin, “The solution of one-dimensional inverse problems of electrodynamics by the Newton-Kantorovich method,” Comput. Math. Math. Phys. 32, 1729–1743 (1992).MathSciNetMATH S. Sh. Bimuratov and S. I. Kabanikhin, “The solution of one-dimensional inverse problems of electrodynamics by the Newton-Kantorovich method,” Comput. Math. Math. Phys. 32, 1729–1743 (1992).MathSciNetMATH
47.
go back to reference V. P. Romanov, Inverse Problems for Differential Equations (Novosib. Gos. Univ., Novosibirsk, 1973) [in Russian]. V. P. Romanov, Inverse Problems for Differential Equations (Novosib. Gos. Univ., Novosibirsk, 1973) [in Russian].
48.
go back to reference A. A. Samarskiy and P. N. Vabishevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Moscow, Librokom, 2009) [in Russian]. A. A. Samarskiy and P. N. Vabishevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Moscow, Librokom, 2009) [in Russian].
49.
go back to reference S. I. Kabanihin, Inverse and Incorrect Problems (Sib. Nauch. Izdat., Novosibirsk, 2009) [in Russian]. S. I. Kabanihin, Inverse and Incorrect Problems (Sib. Nauch. Izdat., Novosibirsk, 2009) [in Russian].
50.
go back to reference A. V. Favorskaya, I. B. Petrov, D. I. Petrov, and N. I. Khokhlov, “Numerical modeling of wave processes in layered media in the Arctic region,” Math. Models Comput. Simul. 8, 348–357 (2016).CrossRefMATH A. V. Favorskaya, I. B. Petrov, D. I. Petrov, and N. I. Khokhlov, “Numerical modeling of wave processes in layered media in the Arctic region,” Math. Models Comput. Simul. 8, 348–357 (2016).CrossRefMATH
51.
go back to reference D. I. Petrov, I. B. Petrov, A. V. Favorskaya, and N. I. Khokhlov, “Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method,” Comput. Math. Math. Phys. 56, 1164–1173 (2016).MathSciNetMATH D. I. Petrov, I. B. Petrov, A. V. Favorskaya, and N. I. Khokhlov, “Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method,” Comput. Math. Math. Phys. 56, 1164–1173 (2016).MathSciNetMATH
52.
go back to reference A. V. Favorskaya and I. B. Petrov, “Wave Responses from oil reservoirs in the Arctic shelf zone,” Dokl. Earth Sci. 466, 214–217 (2016).CrossRef A. V. Favorskaya and I. B. Petrov, “Wave Responses from oil reservoirs in the Arctic shelf zone,” Dokl. Earth Sci. 466, 214–217 (2016).CrossRef
53.
go back to reference P. V. Stognii, D. I. Petrov, N. I. Khokhlov, and I. B. Petrov, “Modeling of seismic processes in geoprospecting works in a shelf zone of the Arctic,” Russ. J. Numer. Anal. Math. Mod. (2017). P. V. Stognii, D. I. Petrov, N. I. Khokhlov, and I. B. Petrov, “Modeling of seismic processes in geoprospecting works in a shelf zone of the Arctic,” Russ. J. Numer. Anal. Math. Mod. (2017).
54.
go back to reference I. E. Kvasov, I. B. Petrov, and F. B. Chelnokov, “Computation of wave processes in nonuniform 3D constructions,” Mat. Model. 21 (5), 3–9 (2009).MathSciNetMATH I. E. Kvasov, I. B. Petrov, and F. B. Chelnokov, “Computation of wave processes in nonuniform 3D constructions,” Mat. Model. 21 (5), 3–9 (2009).MathSciNetMATH
55.
go back to reference O. Ya. Vojnov, V. I. Golubev, M. S. Zhdanov, and I. B. Petrov, “Construction of the elastic method seismic data migration in Born approximation,” Tr. MFTI 8 (2), 60–66 (2016). O. Ya. Vojnov, V. I. Golubev, M. S. Zhdanov, and I. B. Petrov, “Construction of the elastic method seismic data migration in Born approximation,” Tr. MFTI 8 (2), 60–66 (2016).
56.
go back to reference O. M. Belotserkovskiy, Numerical Modeling in Continuous Media Mechanics (Fizmatlit, Moscow, 1994) [in Russian]. O. M. Belotserkovskiy, Numerical Modeling in Continuous Media Mechanics (Fizmatlit, Moscow, 1994) [in Russian].
57.
go back to reference K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Methods (Nauka, Moscow, 1988) [in Russian].MATH K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Methods (Nauka, Moscow, 1988) [in Russian].MATH
58.
go back to reference S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraino, and G. P. Prokopov, Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian]. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraino, and G. P. Prokopov, Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian].
59.
go back to reference R. P. Fedorenko, “Application of high precision difference schemes for the numerical solution of hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz. 2, 1172–1188 (1962). R. P. Fedorenko, “Application of high precision difference schemes for the numerical solution of hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz. 2, 1172–1188 (1962).
60.
go back to reference V. P. Kolgan, “Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics,” Uch. Zap. TsAGI 3 (6), 68–77 (1972). V. P. Kolgan, “Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics,” Uch. Zap. TsAGI 3 (6), 68–77 (1972).
62.
go back to reference I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz. 24, 1172–1188 (1984).MathSciNetMATH I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of hyperbolic equations,” Zh. Vychisl. Mat. Mat. Fiz. 24, 1172–1188 (1984).MathSciNetMATH
63.
go back to reference I. B. Petrov and A. S. Kholodov, “Numerical investigation of some dynamic problems in the mechanics of a deformable solid by the grid-characteristic method,” Zh. Vychisl. Mat. Mat. Fiz. 24, 722–739 (1984).MathSciNetMATH I. B. Petrov and A. S. Kholodov, “Numerical investigation of some dynamic problems in the mechanics of a deformable solid by the grid-characteristic method,” Zh. Vychisl. Mat. Mat. Fiz. 24, 722–739 (1984).MathSciNetMATH
64.
go back to reference A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solutions of Hyperbolic Equation Systems (Fizmatlit, Moscow, 2001) [in Russian].MATH A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solutions of Hyperbolic Equation Systems (Fizmatlit, Moscow, 2001) [in Russian].MATH
65.
go back to reference B. N. Chetverushkin, N. G. Churbanova, A. A. Kuleshov, A. A. Lyupa, and M. A. Trapeznikova, “Application of kinetic approach to porous medium flows simulation in environmental hydrology problems on high-performance computing systems,” Russ. J. Numer. Anal. Math. Model. 31 (4), 187–196 (2016).MathSciNetCrossRefMATH B. N. Chetverushkin, N. G. Churbanova, A. A. Kuleshov, A. A. Lyupa, and M. A. Trapeznikova, “Application of kinetic approach to porous medium flows simulation in environmental hydrology problems on high-performance computing systems,” Russ. J. Numer. Anal. Math. Model. 31 (4), 187–196 (2016).MathSciNetCrossRefMATH
66.
go back to reference E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Dordrecht, Heidelberg, London, New York, 2009).CrossRefMATH E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Dordrecht, Heidelberg, London, New York, 2009).CrossRefMATH
67.
go back to reference V. V. Rusanov, “Third order accuracy difference schemes for end-to-end counting of discontinuous solutions,” Dokl. Akad. Nauk SSSR 180, 1303–1305 (1968).MathSciNet V. V. Rusanov, “Third order accuracy difference schemes for end-to-end counting of discontinuous solutions,” Dokl. Akad. Nauk SSSR 180, 1303–1305 (1968).MathSciNet
68.
69.
go back to reference A. A. Tusheva, Yu. N. Shokin, and N. N. Yanenko, “On the construction of difference schemes of higher order approximation based on differential consequences,” in Some Problems of Computational and Applied Mathematics (Novosibirsk, Nauka, 1975), pp. 184–191 [in Russian]. A. A. Tusheva, Yu. N. Shokin, and N. N. Yanenko, “On the construction of difference schemes of higher order approximation based on differential consequences,” in Some Problems of Computational and Applied Mathematics (Novosibirsk, Nauka, 1975), pp. 184–191 [in Russian].
70.
go back to reference A. S. Kholodov, “On the construction of difference schemes of higher order of accuracy for equations of hyperbolic type,” Zh. Vychisl. Mat. Mat. Fiz. 20, 1601–1620 (1980).MathSciNet A. S. Kholodov, “On the construction of difference schemes of higher order of accuracy for equations of hyperbolic type,” Zh. Vychisl. Mat. Mat. Fiz. 20, 1601–1620 (1980).MathSciNet
71.
go back to reference C.-W. Shu and S. Osher, “Efficient imlementation of essentially non oscillatory schemes shock-capturing schemes,” J. Comput. Phys. 83, 32–78 (1989).MathSciNetCrossRefMATH C.-W. Shu and S. Osher, “Efficient imlementation of essentially non oscillatory schemes shock-capturing schemes,” J. Comput. Phys. 83, 32–78 (1989).MathSciNetCrossRefMATH
72.
go back to reference A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations,” Comput. Math. Math. Phys. 46, 1560–1588 (2006).MathSciNetCrossRef A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations,” Comput. Math. Math. Phys. 46, 1560–1588 (2006).MathSciNetCrossRef
73.
go back to reference M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52, 578–600 (2012).MathSciNetCrossRefMATH M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52, 578–600 (2012).MathSciNetCrossRefMATH
74.
go back to reference V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation,” Math. Models Comput. Simul. 8, 577–584 (2016).MathSciNetCrossRefMATH V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation,” Math. Models Comput. Simul. 8, 577–584 (2016).MathSciNetCrossRefMATH
75.
go back to reference A. V. Favorskaya, I. B. Petrov, A. V. Sannikov, and I. E. Kvasov, “Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step,” Math. Models Comput. Simul. 25, 409–415 (2013).MATH A. V. Favorskaya, I. B. Petrov, A. V. Sannikov, and I. E. Kvasov, “Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step,” Math. Models Comput. Simul. 25, 409–415 (2013).MATH
76.
go back to reference V. B. Leviant, I. E. Kvasov, and I. B. Petrov, “Assessment of possibility of detecting and mapping formational mesofractures using scattered converted waves,” Seismic Technol., No. 1, 14–30 (2016). V. B. Leviant, I. E. Kvasov, and I. B. Petrov, “Assessment of possibility of detecting and mapping formational mesofractures using scattered converted waves,” Seismic Technol., No. 1, 14–30 (2016).
77.
go back to reference I. B. Petrov and N. I. Khokhlov, “Modeling 3D seismic problems using high-performance computer systems,” Math. Models Comput. Simul. 6, 342–350 (2014).MathSciNetCrossRef I. B. Petrov and N. I. Khokhlov, “Modeling 3D seismic problems using high-performance computer systems,” Math. Models Comput. Simul. 6, 342–350 (2014).MathSciNetCrossRef
78.
go back to reference M. Kaser and M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. The two-dimentional isotropic case with external source terms,” Geophys. J. Int. 166, 855–877 (2006).CrossRef M. Kaser and M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. The two-dimentional isotropic case with external source terms,” Geophys. J. Int. 166, 855–877 (2006).CrossRef
79.
go back to reference V. A. Miryaha, A. V. Sannikov, and I. B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids,” Math. Models Comput. Simul. 7, 446–455 (2015).MathSciNetCrossRefMATH V. A. Miryaha, A. V. Sannikov, and I. B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids,” Math. Models Comput. Simul. 7, 446–455 (2015).MathSciNetCrossRefMATH
80.
go back to reference A. I. Tolstyh, Compact and Multioperator Approximations of High Accuracy for Partial Differential Equations (Nauka, Moscow, 2015) [in Russian]. A. I. Tolstyh, Compact and Multioperator Approximations of High Accuracy for Partial Differential Equations (Nauka, Moscow, 2015) [in Russian].
81.
go back to reference I. S. Menshov, “Improving the order of approximation of the Godunov scheme based on the solution of the generalized Riemann problem,” Zh. Vychisl. Mat. Mat. Fiz. 30, 1357–1371 (1990).MathSciNet I. S. Menshov, “Improving the order of approximation of the Godunov scheme based on the solution of the generalized Riemann problem,” Zh. Vychisl. Mat. Mat. Fiz. 30, 1357–1371 (1990).MathSciNet
82.
go back to reference M. E. Ladonkina and V. F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations,” Differ. Equat. 51, 895–903 (2015).MathSciNetCrossRefMATH M. E. Ladonkina and V. F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations,” Differ. Equat. 51, 895–903 (2015).MathSciNetCrossRefMATH
83.
84.
go back to reference M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of the RKDG method for gas dynamics problems,” Math. Models Comput. Simul. 6, 397–407 (2014).MathSciNetCrossRefMATH M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of the RKDG method for gas dynamics problems,” Math. Models Comput. Simul. 6, 397–407 (2014).MathSciNetCrossRefMATH
85.
go back to reference B. N. Chetverushkin, “Applied mathematics and problems of using high-performance computing systems,” Tr. MFTI 3 (4), 55–67 (2011). B. N. Chetverushkin, “Applied mathematics and problems of using high-performance computing systems,” Tr. MFTI 3 (4), 55–67 (2011).
86.
go back to reference G. E. Norman, N. D. Orekhov, V. V. Pisarev, et al., “What for and which exaflops supercomputers are necessary in natural sciences,” Program. Sist.: Teor. Prilozh. 6, 243–311 (2015). G. E. Norman, N. D. Orekhov, V. V. Pisarev, et al., “What for and which exaflops supercomputers are necessary in natural sciences,” Program. Sist.: Teor. Prilozh. 6, 243–311 (2015).
87.
go back to reference N. I. Khohlov and I. B. Petrov, “The use of modern high-performance technologies for seismic and geophysics,” in Calculated Technology in Natural Sciences, Collection of Articles, Ed. by N. N. Nazirov and L. N. Shur (IKI RAN, Moscow, 2015), part 3, pp. 173–185 [in Russian]. N. I. Khohlov and I. B. Petrov, “The use of modern high-performance technologies for seismic and geophysics,” in Calculated Technology in Natural Sciences, Collection of Articles, Ed. by N. N. Nazirov and L. N. Shur (IKI RAN, Moscow, 2015), part 3, pp. 173–185 [in Russian].
88.
go back to reference V. A. Biryukov, V. A. Miryakha, and I. B. Petrov, “Analysis of the dependence of the global load dependence on ice properties for the interaction between an ice field and a structure by a numerical simulation,” Dokl. 474, 327–330 (2017). V. A. Biryukov, V. A. Miryakha, and I. B. Petrov, “Analysis of the dependence of the global load dependence on ice properties for the interaction between an ice field and a structure by a numerical simulation,” Dokl. 474, 327–330 (2017).
89.
go back to reference D. P. Grigorievih, N. I. Khokhlov, and I. B. Petrov, “Calculation of dynamic destruction in deformable bodies,” Mat. Model. 29 (4), 45–58 (2017).MathSciNetMATH D. P. Grigorievih, N. I. Khokhlov, and I. B. Petrov, “Calculation of dynamic destruction in deformable bodies,” Mat. Model. 29 (4), 45–58 (2017).MathSciNetMATH
90.
go back to reference D. N. Voroshchuk, V. A. Miryaha, and I. B. Petrov, “Investigation of 3D seismic response from a vertical geological fault by the discontinuous Galerkin method,” Tr. MFTI, 54–64 (2016). D. N. Voroshchuk, V. A. Miryaha, and I. B. Petrov, “Investigation of 3D seismic response from a vertical geological fault by the discontinuous Galerkin method,” Tr. MFTI, 54–64 (2016).
91.
go back to reference A. V. Favorskaya, I. Petrov, and N. Khokhlov, “Numerical modeling of wave processes during seismic exploration,” Proc. Comput. Sci. 96, 920–929 (2016).CrossRef A. V. Favorskaya, I. Petrov, and N. Khokhlov, “Numerical modeling of wave processes during seismic exploration,” Proc. Comput. Sci. 96, 920–929 (2016).CrossRef
92.
go back to reference A. V. Favorskaya, I. B. Petrov, and N. I. Khokhlov, “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistvie zemletriasenii na sooruzheniia,” Mat. Model. 27 (12), 109–120 (2015).MathSciNet A. V. Favorskaya, I. B. Petrov, and N. I. Khokhlov, “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistvie zemletriasenii na sooruzheniia,” Mat. Model. 27 (12), 109–120 (2015).MathSciNet
93.
go back to reference S. A. Ogorodov, A. S. Shestov, V. V. Arhipov, et al., “Modern ice-abrasion relief on the shelf of the Western Yamal: field studies and modeling,” Vestn NGU, Ser. Mat., Mekh., Inform. 13 (3), 77–89 (2013). S. A. Ogorodov, A. S. Shestov, V. V. Arhipov, et al., “Modern ice-abrasion relief on the shelf of the Western Yamal: field studies and modeling,” Vestn NGU, Ser. Mat., Mekh., Inform. 13 (3), 77–89 (2013).
94.
go back to reference A. A. Kuleshov, “Difference approximation of the problem of bending vibrations of a thin elastic plates,” Comput. Math. Math. Phys. 45, 694–715 (2005).MathSciNet A. A. Kuleshov, “Difference approximation of the problem of bending vibrations of a thin elastic plates,” Comput. Math. Math. Phys. 45, 694–715 (2005).MathSciNet
95.
go back to reference A. A. Kuleshov, V. V. Mymrin, and A. V. Razgulin, “Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates,” Comput. Math. Math. Phys. 49, 146–171 (2009).MathSciNetCrossRefMATH A. A. Kuleshov, V. V. Mymrin, and A. V. Razgulin, “Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates,” Comput. Math. Math. Phys. 49, 146–171 (2009).MathSciNetCrossRefMATH
96.
go back to reference A. A. Kuleshov, “Reduction method with finite-difference approximation for the model of small transverse vibrations in thin elastic plates and some applications,” in Computers and Simulation in Modern Science (WSEAS Press, 2010), Vol. 4, pp. 101–110. A. A. Kuleshov, “Reduction method with finite-difference approximation for the model of small transverse vibrations in thin elastic plates and some applications,” in Computers and Simulation in Modern Science (WSEAS Press, 2010), Vol. 4, pp. 101–110.
97.
go back to reference F. Milinazzo, M. Shinbrot, and N. W. Evans, “A mathematical analysis of the steady response of floating ice to the uniform motion of a rectangular load,” J. Fluid Mech. 287, 173–197 (1995).MathSciNetCrossRefMATH F. Milinazzo, M. Shinbrot, and N. W. Evans, “A mathematical analysis of the steady response of floating ice to the uniform motion of a rectangular load,” J. Fluid Mech. 287, 173–197 (1995).MathSciNetCrossRefMATH
98.
go back to reference P. Wetzel, H. Haak, J. Jungclaus, and E. Maier-Reimer, “The Max-Planck-Institute global ocean/sea-ice model MPI-OM,” Technical Report. http://www.mpimet.mpg.de/fileadmin/models/MPIOM/. P. Wetzel, H. Haak, J. Jungclaus, and E. Maier-Reimer, “The Max-Planck-Institute global ocean/sea-ice model MPI-OM,” Technical Report. http://​www.​mpimet.​mpg.​de/​fileadmin/​models/​MPIOM/​.​
99.
go back to reference V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Modeling climate and its changes,” Vestn. Ross. Akad. Nauk 82, 227–236 (2012). V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Modeling climate and its changes,” Vestn. Ross. Akad. Nauk 82, 227–236 (2012).
100.
go back to reference K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, Yu. V. Vassilevski, and R. M. Yanbarisov, “An adaptive numerical method for free surface flows passing rigidly mounted obstacles,” Comput. Fluids 148, 56–68 (2017).MathSciNetCrossRefMATH K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, Yu. V. Vassilevski, and R. M. Yanbarisov, “An adaptive numerical method for free surface flows passing rigidly mounted obstacles,” Comput. Fluids 148, 56–68 (2017).MathSciNetCrossRefMATH
101.
go back to reference V. A. Gasilov, I. V. Gasilova, L. V. Klochkova, Y. A. Poveshchenko, and V. F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates,” Comput. Math. Math. Phys. 55, 1310–1323 (2015).MathSciNetCrossRefMATH V. A. Gasilov, I. V. Gasilova, L. V. Klochkova, Y. A. Poveshchenko, and V. F. Tishkin, “Difference schemes based on the support operator method for fluids dynamics problems in a collector containing gas hydrates,” Comput. Math. Math. Phys. 55, 1310–1323 (2015).MathSciNetCrossRefMATH
102.
go back to reference R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, and V. F. Tishkin, “Application of the discontinuous Galerkin method for solving parabolic problems in anisotropic media on triangular meshes,” Vestn. Yuzh.-Ural. Univ., Ser.: Mat. Model. Programmir. 9 (3), 144–151 (2016).MATH R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, and V. F. Tishkin, “Application of the discontinuous Galerkin method for solving parabolic problems in anisotropic media on triangular meshes,” Vestn. Yuzh.-Ural. Univ., Ser.: Mat. Model. Programmir. 9 (3), 144–151 (2016).MATH
103.
go back to reference V. A. Balashov and E. B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small Mach numbers,” Comput. Math. Math. Phys. 55, 1743–1751 (2015).MathSciNetCrossRefMATH V. A. Balashov and E. B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small Mach numbers,” Comput. Math. Math. Phys. 55, 1743–1751 (2015).MathSciNetCrossRefMATH
104.
go back to reference V. A. Balashov, E. B. Savenkov, and A. A. Kuleshov, “Direct numerical simulation of a fluid flow in core samples based on quasi-hydrodynamic equations,” in Proceedings of the ICCMSE-2016, Ed. by T. E. Simos et al., AIP Conf. Proc. 1790, 150 006 (2016). V. A. Balashov, E. B. Savenkov, and A. A. Kuleshov, “Direct numerical simulation of a fluid flow in core samples based on quasi-hydrodynamic equations,” in Proceedings of the ICCMSE-2016, Ed. by T. E. Simos et al., AIP Conf. Proc. 1790, 150 006 (2016).
105.
go back to reference V. A. Balashov and E. B. Savenkov, “Direct pore-scale flow simulation using quasi-hydrodynamic equations,” Dokl. Phys. 61, 192–194 (2016).CrossRef V. A. Balashov and E. B. Savenkov, “Direct pore-scale flow simulation using quasi-hydrodynamic equations,” Dokl. Phys. 61, 192–194 (2016).CrossRef
Metadata
Title
Problems of Modeling Natural and Anthropogenic Processes in the Arctic Zone of the Russian Federation
Author
I. B. Petrov
Publication date
01-03-2019
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 2/2019
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219020145

Other articles of this Issue 2/2019

Mathematical Models and Computer Simulations 2/2019 Go to the issue

Premium Partner