Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Process Analysis of Microalgae Biomass Thermal Disruption for Biofuel Production

Authors : Ahmed Artan, Caleb Acquah, Michael K. Danquah, Clarence M. Ongkudon

Published in: Advances in Bioprocess Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The continual usage of petroleum-sourced fuels is now widely recognized as unsustainable due to the depleting supplies, and the contribution of these fuels to the accumulation of greenhouse gases in the environment. A suitable alternative is the utilisation of renewable transport fuels. These fuels are environmentally friendly and economically sustainable. Biodiesel and bioethanol derived from plant lipids and carbohydrate-based crops are potential renewable alternatives to petroleum fuels. In recent years, the cultivation of microalgae as an alternative feedstock for the production of biofuel has received significant attention. This is as a result of the fact that, they have a fast growth rate, can accumulate high quantities of lipids and carbohydrates intracellularly for the production of biodiesel and bioethanol, respectively. That notwithstanding, the processes involved in the cultivation of microalgae, dewatering, biochemical extraction, and conversion to biofuels are energy intensive and as a result undermine its full-scale application potentials. This therefore has necessitated the need for an intensive attention and research in order to debottleneck the aforementioned areas. Electroporation, High pressure homogenization (HPH), Ultrasonic and Bead mills are examples of present cell disruption technologies. However, the electroportation process which at present seems more energy efficient than the rest has only been tried on a lab scale, and yet to be experimented on an industrial scale capacity. In this work, a successful design of an energy-efficient cell disruption technology that can treat up to a mass scale of 10,000 gal/annum of lipids was designed by means of thermal lysis. A comparative analysis with other methods reveals that the designed system is significantly reliable, with the least fractional energy registered as low as 0.41 at an algal concentration of 6 kg/m3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adam, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.CrossRef Adam, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.CrossRef
go back to reference Asafu-Adjaye, J., & Mahadevan, R. (2013). Implications of CO2 reduction policies for a high carbon emitting economy. Energy Economics, 38, 32–41.CrossRef Asafu-Adjaye, J., & Mahadevan, R. (2013). Implications of CO2 reduction policies for a high carbon emitting economy. Energy Economics, 38, 32–41.CrossRef
go back to reference Ayhan, D., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163–170.CrossRef Ayhan, D., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163–170.CrossRef
go back to reference Bartlett, A. (2000). An analysis of US and world oil production patterns using Hubbert-style curves. Mathematical Geology, 32, 1–17.CrossRef Bartlett, A. (2000). An analysis of US and world oil production patterns using Hubbert-style curves. Mathematical Geology, 32, 1–17.CrossRef
go back to reference Bell K. J. (1980). Preliminary design of shell and tube heat exchangers. In Conf. NATO Adv. Study Inst. Heat Exchangers: Thermal-Hydraulic Fund. & Design. pp. 559–580. Bell K. J. (1980). Preliminary design of shell and tube heat exchangers. In Conf. NATO Adv. Study Inst. Heat Exchangers: Thermal-Hydraulic Fund. & Design. pp. 559–580.
go back to reference Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRef Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRef
go back to reference Chen, C., Zhao, X., Yen, H., Ho, S., Cheng, C., Lee, D., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.CrossRef Chen, C., Zhao, X., Yen, H., Ho, S., Cheng, C., Lee, D., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.CrossRef
go back to reference Cooney, M., Young, G., & Nagle, N. (2009). Extraction of Biooils from Microalgae. Separation & Purification Reviews, 38(4), 291–325. Cooney, M., Young, G., & Nagle, N. (2009). Extraction of Biooils from Microalgae. Separation & Purification Reviews, 38(4), 291–325.
go back to reference Coons, J., Kalb, D. M., Dale, T., & Marrone, B. L. (2014). Show more Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Research, 1, 1–20. Coons, J., Kalb, D. M., Dale, T., & Marrone, B. L. (2014). Show more Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Research, 1, 1–20.
go back to reference Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol, 21, 493–507.CrossRef Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol, 21, 493–507.CrossRef
go back to reference Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732.CrossRef Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732.CrossRef
go back to reference Hallock, J. L., Tharakan, P. J., Hall, C. A., Jefferson, M., & Wua, W. (2004). Forecasting the limits to the availability and diversity of global conventional oil supply. Energy, 29, 1673–1696.CrossRef Hallock, J. L., Tharakan, P. J., Hall, C. A., Jefferson, M., & Wua, W. (2004). Forecasting the limits to the availability and diversity of global conventional oil supply. Energy, 29, 1673–1696.CrossRef
go back to reference Harun, R., Danquah, M. K., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Chem. Technol, 85, 199–203. Harun, R., Danquah, M. K., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Chem. Technol, 85, 199–203.
go back to reference Huntley, M. E., & Redalje, D. G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Bioresource Technology, 12(4), 573. Huntley, M. E., & Redalje, D. G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Bioresource Technology, 12(4), 573.
go back to reference Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8), 4945–4953.CrossRef Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8), 4945–4953.CrossRef
go back to reference Lam, M., & Lee, K. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.CrossRef Lam, M., & Lee, K. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.CrossRef
go back to reference Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.CrossRef Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.CrossRef
go back to reference Taal, M., Bulatov, I., Klemeš, J., & Stehlk, P. (2003). Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Applied Thermal Engineering, 23(14), 1819–1835. Taal, M., Bulatov, I., Klemeš, J., & Stehlk, P. (2003). Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Applied Thermal Engineering, 23(14), 1819–1835.
go back to reference McMillan, R., Jonathan, Watson, I. A., Ali, M., & Jaafar, W. (2013). Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Applied Energy, 103(0306–2619), 128–134.CrossRef McMillan, R., Jonathan, Watson, I. A., Ali, M., & Jaafar, W. (2013). Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Applied Energy, 103(0306–2619), 128–134.CrossRef
go back to reference Samarasinghe, N., Fernando, S., Lacey, R., & Faulkner, W. B. (2012). Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renewable Energy, 48, 300–308. Samarasinghe, N., Fernando, S., Lacey, R., & Faulkner, W. B. (2012). Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renewable Energy, 48, 300–308.
go back to reference Shilton, A. N., Powell, N., & Guieysse, B. (2012). Plant based phosphorus recovery from wastewater via algae and macrophtes. Current opinion in biotechnology, 23(6), 884–889. Shilton, A. N., Powell, N., & Guieysse, B. (2012). Plant based phosphorus recovery from wastewater via algae and macrophtes. Current opinion in biotechnology, 23(6), 884–889.
go back to reference Sheng, J., Vannela, R., & Rittmann. (2011). Evaluation of cell-disruption effects of pulsedelectric-field treatment of Synchocystis PCC 6803. Environmental Science & Technology, 45, 3795–3802.CrossRef Sheng, J., Vannela, R., & Rittmann. (2011). Evaluation of cell-disruption effects of pulsedelectric-field treatment of Synchocystis PCC 6803. Environmental Science & Technology, 45, 3795–3802.CrossRef
go back to reference Spiden, E. M., Scales, P. J., Kentish, S. E., & Martin, G. J. O. (2013). Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochemical Engineering Journal, 70, 120–126.CrossRef Spiden, E. M., Scales, P. J., Kentish, S. E., & Martin, G. J. O. (2013). Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochemical Engineering Journal, 70, 120–126.CrossRef
go back to reference Wileman, A., Ozkan, A., & Berberoglu, H. (2012). Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresource technology, 104, 432–439. Wileman, A., Ozkan, A., & Berberoglu, H. (2012). Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresource technology, 104, 432–439.
Metadata
Title
Process Analysis of Microalgae Biomass Thermal Disruption for Biofuel Production
Authors
Ahmed Artan
Caleb Acquah
Michael K. Danquah
Clarence M. Ongkudon
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_7