Skip to main content
Top

2019 | OriginalPaper | Chapter

PROcket, an Efficient Algorithm to Predict Protein Ligand Binding Site

Authors : Rahul Semwal, Imlimaong Aier, Pritish Kumar Varadwaj, Slava Antsiperov

Published in: Bioinformatics and Biomedical Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To carry out functional annotation of proteins, the most crucial step is to identify the ligand binding site (LBS) information. Although several algorithms have been reported to identify the LBS, most have limited accuracy and efficiency while considering the number and type of geometrical and physio-chemical features used for such predictions. In this proposed work, a fast and accurate algorithm “PROcket” has been implemented and discussed. The algorithm uses grid-based approach to cluster the local residue neighbors that are present on the solvent accessible surface of proteins. Further with inclusion of selected physio-chemical properties and phylogenetically conserved residues, the algorithm enables accurate detection of the LBS. A comparative study with well-known tools; LIGSITE, LIGSITECS, PASS and CASTptool was performed to analyze the performance of our tool. A set of 48 ligand-bound protein structures from different families were used to compare the performance of the tools. The PROcket algorithm outperformed the existing methods in terms of quality and processing speed with 91% accuracy while considering top 3 rank pockets and 98% accuracy considering top 5 rank pockets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dutta, S., et al.: Data deposition and annotation at the worldwide protein data bank. Mol. Biotechnol. 42(1), 1–13 (2009)MathSciNetCrossRef Dutta, S., et al.: Data deposition and annotation at the worldwide protein data bank. Mol. Biotechnol. 42(1), 1–13 (2009)MathSciNetCrossRef
2.
go back to reference Craig, I.R., Pfleger, C., Gohlke, H., Essex, J.W., Spiegel, K.: Pocket-space maps to identify novel binding-site conformations in proteins. J. Chem. Inf. Model. 51(10), 2666–2679 (2011)CrossRef Craig, I.R., Pfleger, C., Gohlke, H., Essex, J.W., Spiegel, K.: Pocket-space maps to identify novel binding-site conformations in proteins. J. Chem. Inf. Model. 51(10), 2666–2679 (2011)CrossRef
3.
go back to reference Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser, I.A.: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. 89(6), 2195–2199 (1992)CrossRef Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser, I.A.: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. 89(6), 2195–2199 (1992)CrossRef
4.
go back to reference Jones, S., Thornton, J.M.: Principles of protein-protein interactions. Proc. Natl. Acad. Sci. 93(1), 13–20 (1996)CrossRef Jones, S., Thornton, J.M.: Principles of protein-protein interactions. Proc. Natl. Acad. Sci. 93(1), 13–20 (1996)CrossRef
5.
go back to reference Heifetz, A., Katchalski-Katzir, E., Eisenstein, M.: Electrostatics in protein–protein docking. Protein Sci. 11(3), 571–587 (2002)CrossRef Heifetz, A., Katchalski-Katzir, E., Eisenstein, M.: Electrostatics in protein–protein docking. Protein Sci. 11(3), 571–587 (2002)CrossRef
6.
go back to reference Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Funct. Bioinf. 47(4), 409–443 (2002)CrossRef Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Funct. Bioinf. 47(4), 409–443 (2002)CrossRef
7.
go back to reference Levitt, D.G., Banaszak, L.J.: POCKET: a computer graphies method for identifying and displaying protein cavities and their surrounding amino acids. J. Mol. Graph. 10(4), 229–234 (1992)CrossRef Levitt, D.G., Banaszak, L.J.: POCKET: a computer graphies method for identifying and displaying protein cavities and their surrounding amino acids. J. Mol. Graph. 10(4), 229–234 (1992)CrossRef
8.
go back to reference Delaney, J.S.: Finding and filling protein cavities using cellular logic operations. J. Mol. Graph. 10(3), 174–177 (1992)CrossRef Delaney, J.S.: Finding and filling protein cavities using cellular logic operations. J. Mol. Graph. 10(3), 174–177 (1992)CrossRef
9.
go back to reference Del Carpio, C.A., Takahashi, Y., Sasaki, S.I.: A new approach to the automatic identification of candidates for ligand receptor sites in proteins: (I) search for pocket regions. J. Mol. Graph. 11(1), 23–29 (1993)CrossRef Del Carpio, C.A., Takahashi, Y., Sasaki, S.I.: A new approach to the automatic identification of candidates for ligand receptor sites in proteins: (I) search for pocket regions. J. Mol. Graph. 11(1), 23–29 (1993)CrossRef
10.
go back to reference Kleywegt, G.J., Jones, T.A.: Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. Sect. D: Biol. Crystallogr. 50(2), 178–185 (1994)CrossRef Kleywegt, G.J., Jones, T.A.: Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. Sect. D: Biol. Crystallogr. 50(2), 178–185 (1994)CrossRef
11.
go back to reference Masuya, M., Doi, J.: Detection and geometric modeling of molecular surfaces and cavities using digital mathematical morphological operations. J. Mol. Graph. 13(6), 331–336 (1995)CrossRef Masuya, M., Doi, J.: Detection and geometric modeling of molecular surfaces and cavities using digital mathematical morphological operations. J. Mol. Graph. 13(6), 331–336 (1995)CrossRef
12.
go back to reference Peters, K.P., Fauck, J., Frömmel, C.: The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256(1), 201–213 (1996)CrossRef Peters, K.P., Fauck, J., Frömmel, C.: The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256(1), 201–213 (1996)CrossRef
13.
go back to reference Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 15(6), 359–363 (1997)CrossRef Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 15(6), 359–363 (1997)CrossRef
14.
go back to reference Huang, B., Schroeder, M.: LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 6(1), 19 (2006)CrossRef Huang, B., Schroeder, M.: LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 6(1), 19 (2006)CrossRef
15.
go back to reference Ruppert, J., Welch, W., Jain, A.N.: Automatic identification and representation of protein binding sites for molecular docking. Protein Sci. 6(3), 524–533 (1997)CrossRef Ruppert, J., Welch, W., Jain, A.N.: Automatic identification and representation of protein binding sites for molecular docking. Protein Sci. 6(3), 524–533 (1997)CrossRef
16.
go back to reference Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7(9), 1884–1897 (1998)CrossRef Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7(9), 1884–1897 (1998)CrossRef
17.
go back to reference Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34(Suppl_2), W116–W118 (2006)CrossRef Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34(Suppl_2), W116–W118 (2006)CrossRef
18.
go back to reference Brady, G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14(4), 383–401 (2000)CrossRef Brady, G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14(4), 383–401 (2000)CrossRef
19.
go back to reference Venkatachalam, C.M., Jiang, X., Oldfield, T., Waldman, M.: LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21(4), 289–307 (2003)CrossRef Venkatachalam, C.M., Jiang, X., Oldfield, T., Waldman, M.: LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21(4), 289–307 (2003)CrossRef
20.
go back to reference An, J., Totrov, M., Abagyan, R.: Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell. Proteomics 4(6), 752–761 (2005)CrossRef An, J., Totrov, M., Abagyan, R.: Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell. Proteomics 4(6), 752–761 (2005)CrossRef
21.
go back to reference Nayal, M., Honig, B.: On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins: Struct. Funct. Bioinf. 63(4), 892–906 (2006)CrossRef Nayal, M., Honig, B.: On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins: Struct. Funct. Bioinf. 63(4), 892–906 (2006)CrossRef
22.
go back to reference Glaser, F., Morris, R.J., Najmanovich, R.J., Laskowski, R.A., Thornton, J.M.: A method for localizing ligand binding pockets in protein structures. PROTEINS: Struct. Funct. Bioinf. 62(2), 479–488 (2006)CrossRef Glaser, F., Morris, R.J., Najmanovich, R.J., Laskowski, R.A., Thornton, J.M.: A method for localizing ligand binding pockets in protein structures. PROTEINS: Struct. Funct. Bioinf. 62(2), 479–488 (2006)CrossRef
23.
go back to reference Kawabata, T., Go, N.: Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Proteins: Struct. Funct. Bioinf. 68(2), 516–529 (2007)CrossRef Kawabata, T., Go, N.: Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Proteins: Struct. Funct. Bioinf. 68(2), 516–529 (2007)CrossRef
24.
go back to reference Kim, D., Cho, C.H., Cho, Y., Ryu, J., Bhak, J., Kim, D.S.: Pocket extraction on proteins via the Voronoi diagram of spheres. J. Mol. Graph. Model. 26(7), 1104–1112 (2008)CrossRef Kim, D., Cho, C.H., Cho, Y., Ryu, J., Bhak, J., Kim, D.S.: Pocket extraction on proteins via the Voronoi diagram of spheres. J. Mol. Graph. Model. 26(7), 1104–1112 (2008)CrossRef
25.
go back to reference McGovern, S.L., Shoichet, B.K.: Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J. Med. Chem. 46(14), 2895–2907 (2003)CrossRef McGovern, S.L., Shoichet, B.K.: Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J. Med. Chem. 46(14), 2895–2907 (2003)CrossRef
26.
go back to reference Bhinge, A., Chakrabarti, P., Uthanumallian, K., Bajaj, K., Chakraborty, K., Varadarajan, R.: Accurate detection of protein: ligand binding sites using molecular dynamics simulations. Structure 12(11), 1989–1999 (2004)CrossRef Bhinge, A., Chakrabarti, P., Uthanumallian, K., Bajaj, K., Chakraborty, K., Varadarajan, R.: Accurate detection of protein: ligand binding sites using molecular dynamics simulations. Structure 12(11), 1989–1999 (2004)CrossRef
27.
go back to reference Yang, A.Y.C., Källblad, P., Mancera, R.L.: Molecular modelling prediction of ligand binding site flexibility. J. Comput. Aided Mol. Des. 18(4), 235–250 (2004)CrossRef Yang, A.Y.C., Källblad, P., Mancera, R.L.: Molecular modelling prediction of ligand binding site flexibility. J. Comput. Aided Mol. Des. 18(4), 235–250 (2004)CrossRef
28.
go back to reference Murga, L.F., Ondrechen, M.J., Ringe, D.: Prediction of interaction sites from apo 3D structures when the holo conformation is different. Proteins: Struct. Funct. Bioinf. 72(3), 980–992 (2008)CrossRef Murga, L.F., Ondrechen, M.J., Ringe, D.: Prediction of interaction sites from apo 3D structures when the holo conformation is different. Proteins: Struct. Funct. Bioinf. 72(3), 980–992 (2008)CrossRef
29.
go back to reference Foote, J., Raman, A.: A relation between the principal axes of inertia and ligand binding. Proc. Natl. Acad. Sci. 97(3), 978–983 (2000)CrossRef Foote, J., Raman, A.: A relation between the principal axes of inertia and ligand binding. Proc. Natl. Acad. Sci. 97(3), 978–983 (2000)CrossRef
31.
go back to reference Pettersen, E.F., et al.: UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)CrossRef Pettersen, E.F., et al.: UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)CrossRef
Metadata
Title
PROcket, an Efficient Algorithm to Predict Protein Ligand Binding Site
Authors
Rahul Semwal
Imlimaong Aier
Pritish Kumar Varadwaj
Slava Antsiperov
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17938-0_40

Premium Partner