Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Production Strategies for Commercialization of PHA

Author : Geeta Gahlawat

Published in: Polyhydroxyalkanoates Biopolymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The most important criterion for large-scale production of polyhydroxyalkanoate (PHA) is sustainability in terms of supply and cost. The sustainable production of PHAs could be achieved by utilization of renewable, inexpensive carbon substrates and adopting efficient extraction processes. The operational cost of PHAs production process can be significantly minimized by using high yielding strains and various process optimization strategies. This chapter focuses on various strategies used in literature for cost-effective sustainable production of PHA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743 Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743
go back to reference Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53CrossRef Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53CrossRef
go back to reference Amulya K, Jukuri S, Mohan SV (2015) Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: process integration for up-scaling. Bioresour Technol 188:231–239PubMedCrossRef Amulya K, Jukuri S, Mohan SV (2015) Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: process integration for up-scaling. Bioresour Technol 188:231–239PubMedCrossRef
go back to reference Anterrieu S, Quadri L, Geurkink B, Dinkla I, Bengtsson S, Arcos-Hernandez M, Alexandersson T, Morgan-Sagastume F, Karlsson A, Hjort M, Karabegovic L (2014) Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnol 31:308–323CrossRef Anterrieu S, Quadri L, Geurkink B, Dinkla I, Bengtsson S, Arcos-Hernandez M, Alexandersson T, Morgan-Sagastume F, Karlsson A, Hjort M, Karabegovic L (2014) Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnol 31:308–323CrossRef
go back to reference Aramvash A, Gholami-Banadkuki N, Moazzeni-Zavareh F, Hajizadeh-Turchi S (2015) An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents. J Microbiol Biotechnol 25(11):1936–1943PubMedCrossRef Aramvash A, Gholami-Banadkuki N, Moazzeni-Zavareh F, Hajizadeh-Turchi S (2015) An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents. J Microbiol Biotechnol 25(11):1936–1943PubMedCrossRef
go back to reference Aramvash A, Gholami-Banadkuki N, Seyedkarimi MS (2016) An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator. Biotechnol Prog 32(6):1480–1487PubMedCrossRef Aramvash A, Gholami-Banadkuki N, Seyedkarimi MS (2016) An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator. Biotechnol Prog 32(6):1480–1487PubMedCrossRef
go back to reference Aramvash A, Moazzeni Zavareh F, Gholami Banadkuki N (2018) Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Eng Life Sci 18(1):20–28CrossRefPubMed Aramvash A, Moazzeni Zavareh F, Gholami Banadkuki N (2018) Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Eng Life Sci 18(1):20–28CrossRefPubMed
go back to reference Arikawa H, Sato S, Fujiki T, Matsumoto K (2017) Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. J Biosci Bioeng 124(2):250–254PubMedCrossRef Arikawa H, Sato S, Fujiki T, Matsumoto K (2017) Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. J Biosci Bioeng 124(2):250–254PubMedCrossRef
go back to reference Aslan AN, Ali MM, Morad NA, Tamunaidu P (2016) Polyhydroxyalkanoates production from waste biomass. IOP Conf Ser Earth Environ Sci 36(1):012040CrossRef Aslan AN, Ali MM, Morad NA, Tamunaidu P (2016) Polyhydroxyalkanoates production from waste biomass. IOP Conf Ser Earth Environ Sci 36(1):012040CrossRef
go back to reference Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91(2):295–304PubMedCrossRef Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91(2):295–304PubMedCrossRef
go back to reference Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos-Hernandez M, Karabegovic L, Magnusson P (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol 35:42–53CrossRef Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos-Hernandez M, Karabegovic L, Magnusson P (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol 35:42–53CrossRef
go back to reference Berwig KH, Baldasso C, Dettmer A (2016) Production and characterization of poly (3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresour Technol 218:31–37PubMedCrossRef Berwig KH, Baldasso C, Dettmer A (2016) Production and characterization of poly (3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresour Technol 218:31–37PubMedCrossRef
go back to reference Bhatia SK, Kim JH, Kim MS, Kim J, Hong JW, Hong YG, Kim HJ, Jeon JM, Kim SH, Ahn J, Lee H (2018) Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng 41(2):229–235PubMedCrossRef Bhatia SK, Kim JH, Kim MS, Kim J, Hong JW, Hong YG, Kim HJ, Jeon JM, Kim SH, Ahn J, Lee H (2018) Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng 41(2):229–235PubMedCrossRef
go back to reference Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18(2):463–470PubMedCrossRef Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18(2):463–470PubMedCrossRef
go back to reference Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808CrossRef Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808CrossRef
go back to reference Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRef Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRef
go back to reference Cavalheiro JMBT, Raposo RS, de Almeida MCMD, Teresa CM, Sevrin C, Grandfils C, da Fonseca MMR (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Biores Technol 111:391–397CrossRef Cavalheiro JMBT, Raposo RS, de Almeida MCMD, Teresa CM, Sevrin C, Grandfils C, da Fonseca MMR (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Biores Technol 111:391–397CrossRef
go back to reference Chakravarty P, Mhaisalkar V, Chakrabarti T (2010) Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresour Technol 101:2896–2899PubMedCrossRef Chakravarty P, Mhaisalkar V, Chakrabarti T (2010) Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresour Technol 101:2896–2899PubMedCrossRef
go back to reference Chang HN, Jung K, Lee JC, Woo HC (2014) Multi-stage continuous high cell density culture systems: A review. Biotechnol Adv 32(2):514–525PubMedCrossRef Chang HN, Jung K, Lee JC, Woo HC (2014) Multi-stage continuous high cell density culture systems: A review. Biotechnol Adv 32(2):514–525PubMedCrossRef
go back to reference Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632PubMedCrossRef Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632PubMedCrossRef
go back to reference Chen GQ, Jiang XR (2018) Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol 53:20–25PubMedCrossRef Chen GQ, Jiang XR (2018) Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol 53:20–25PubMedCrossRef
go back to reference Chen Z, Huang L, Wen Q, Guo Z (2015) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75PubMedCrossRef Chen Z, Huang L, Wen Q, Guo Z (2015) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75PubMedCrossRef
go back to reference Chen Z, Guo Z, Wen Q, Huang L, Bakke R, Du M (2016) Modeling polyhydroxyalkanoate (PHA) production in a newly developed aerobic dynamic discharge (ADD) culture enrichment process. Chem Eng J 298:36–43CrossRef Chen Z, Guo Z, Wen Q, Huang L, Bakke R, Du M (2016) Modeling polyhydroxyalkanoate (PHA) production in a newly developed aerobic dynamic discharge (ADD) culture enrichment process. Chem Eng J 298:36–43CrossRef
go back to reference Chen X, Yin J, Ye J, Zhang H, Che X, Ma Y, Li M, Wu LP, Chen GQ (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour Technol 244:534–541PubMedCrossRef Chen X, Yin J, Ye J, Zhang H, Che X, Ma Y, Li M, Wu LP, Chen GQ (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour Technol 244:534–541PubMedCrossRef
go back to reference Ciesielski S, Możejko J, Pisutpaisal N (2015) Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod 106:408–421CrossRef Ciesielski S, Możejko J, Pisutpaisal N (2015) Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod 106:408–421CrossRef
go back to reference Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F (2017) Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels 10(1):201PubMedPubMedCentralCrossRef Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F (2017) Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels 10(1):201PubMedPubMedCentralCrossRef
go back to reference Cruz MV, Gouveia AR, Dionísio M, Freitas F, Reis MA (2019) A process engineering approach to improve production of P(3HB) by Cupriavidus necator from used cooking oil. Int J Polym Sci Cruz MV, Gouveia AR, Dionísio M, Freitas F, Reis MA (2019) A process engineering approach to improve production of P(3HB) by Cupriavidus necator from used cooking oil. Int J Polym Sci
go back to reference Cui YW, Zhang HY, Lu PF, Peng YZ (2016) Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Sci Rep 6:30766PubMedPubMedCentralCrossRef Cui YW, Zhang HY, Lu PF, Peng YZ (2016) Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Sci Rep 6:30766PubMedPubMedCentralCrossRef
go back to reference de Paula FC, de Paula CB, Gomez JGC, Steinbüchel A, Contiero J (2017) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. Biotechnol Prog 33(4):1077–1084PubMedCrossRef de Paula FC, de Paula CB, Gomez JGC, Steinbüchel A, Contiero J (2017) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. Biotechnol Prog 33(4):1077–1084PubMedCrossRef
go back to reference Dhangdhariya JH, Dubey S, Trivedi HB, Pancha I, Bhatt JK, Dave BP, Mishra S (2015) Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s Dry Sea Mix as a novel growth medium. Int J Biol Macromol 76:254–261PubMedCrossRef Dhangdhariya JH, Dubey S, Trivedi HB, Pancha I, Bhatt JK, Dave BP, Mishra S (2015) Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s Dry Sea Mix as a novel growth medium. Int J Biol Macromol 76:254–261PubMedCrossRef
go back to reference Dircks K, Beun JJ, Van Loosdrecht M, Heijnen JJ, Henze M (2001) Glycogen metabolism in aerobic mixed cultures. Biotechnol Bioeng 73:85–94PubMedCrossRef Dircks K, Beun JJ, Van Loosdrecht M, Heijnen JJ, Henze M (2001) Glycogen metabolism in aerobic mixed cultures. Biotechnol Bioeng 73:85–94PubMedCrossRef
go back to reference Divyashree M, Shamala T, Rastogi N (2009) Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioproc Eng 14(4):482–489CrossRef Divyashree M, Shamala T, Rastogi N (2009) Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioproc Eng 14(4):482–489CrossRef
go back to reference Dong Z, Sun X (2000) A new method of recovering polyhydroxyalkanoate from Azotobacter chroococcum. Chin Sci Bull 45(3):252–256CrossRef Dong Z, Sun X (2000) A new method of recovering polyhydroxyalkanoate from Azotobacter chroococcum. Chin Sci Bull 45(3):252–256CrossRef
go back to reference Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88(1):59–65PubMedCrossRef Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88(1):59–65PubMedCrossRef
go back to reference Du C, Sabirova J, Soetaert W, Ki CLS (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25 Du C, Sabirova J, Soetaert W, Ki CLS (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25
go back to reference Duque AF, Oliveira CS, Carmo IT, Gouveia AR, Pardelha F, Ramos AM, Reis MA (2014) Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. New Biotechnol 31:276–288CrossRef Duque AF, Oliveira CS, Carmo IT, Gouveia AR, Pardelha F, Ramos AM, Reis MA (2014) Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. New Biotechnol 31:276–288CrossRef
go back to reference Fei T, Cazeneuve S, Wen Z, Wu L, Wang T (2016) Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system. Biotechnol Prog 38:678–685CrossRef Fei T, Cazeneuve S, Wen Z, Wu L, Wang T (2016) Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system. Biotechnol Prog 38:678–685CrossRef
go back to reference Fernández-Dacosta C, Posada JA, Kleerebezem R, Cuellar MC, Ramirez A (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377PubMedCrossRef Fernández-Dacosta C, Posada JA, Kleerebezem R, Cuellar MC, Ramirez A (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377PubMedCrossRef
go back to reference Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GM, Reis MA (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1, 2-propylene carbonate. Eng Life Sci 9(6):454–461CrossRef Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GM, Reis MA (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1, 2-propylene carbonate. Eng Life Sci 9(6):454–461CrossRef
go back to reference Fradinho JC, Domingos JMB, Carvalho G, Oehmen A, Reis MAM (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153PubMedCrossRef Fradinho JC, Domingos JMB, Carvalho G, Oehmen A, Reis MAM (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153PubMedCrossRef
go back to reference Franz A, Song HS, Ramkrishna D, Kienle A (2011) Experimental and theoretical analysis of poly (β-hydroxybutyrate) formation and consumption in Ralstonia eutropha. Biochem Eng J 55(1):49–58CrossRef Franz A, Song HS, Ramkrishna D, Kienle A (2011) Experimental and theoretical analysis of poly (β-hydroxybutyrate) formation and consumption in Ralstonia eutropha. Biochem Eng J 55(1):49–58CrossRef
go back to reference Gahlawat G, Kumar Soni S (2019) Study on sustainable recovery and extraction of Polyhydroxyalkanoates (PHAs) produced by Cupriavidus necator using waste glycerol for medical applications. Chem Biochem Eng Q 33(1):99–110CrossRef Gahlawat G, Kumar Soni S (2019) Study on sustainable recovery and extraction of Polyhydroxyalkanoates (PHAs) produced by Cupriavidus necator using waste glycerol for medical applications. Chem Biochem Eng Q 33(1):99–110CrossRef
go back to reference Gahlawat G, Soni SK (2017) Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour Technol 243:492–501PubMedCrossRef Gahlawat G, Soni SK (2017) Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour Technol 243:492–501PubMedCrossRef
go back to reference Gahlawat G, Srivastava A (2012) Estimation of fundamental kinetic parameters of Polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Appl Biochem Biotechnol 168(5):1051–1064PubMedCrossRef Gahlawat G, Srivastava A (2012) Estimation of fundamental kinetic parameters of Polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Appl Biochem Biotechnol 168(5):1051–1064PubMedCrossRef
go back to reference Gahlawat G, Srivastava A (2013) Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresour Technol 137:98–105PubMedCrossRef Gahlawat G, Srivastava A (2013) Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresour Technol 137:98–105PubMedCrossRef
go back to reference Gahlawat G, Srivastava A (2014) Microbial production of PHB and its copolymers (Ph.D. thesis). Indian Institute of Technology Delhi, India Gahlawat G, Srivastava A (2014) Microbial production of PHB and its copolymers (Ph.D. thesis). Indian Institute of Technology Delhi, India
go back to reference Gahlawat G, Srivastava A (2017) Model-based nutrient feeding strategies for the increased production of Polyhydroxybutyrate (PHB) by Alcaligenes latus. Appl Biochem Biotechnol 183:530–542PubMedCrossRef Gahlawat G, Srivastava A (2017) Model-based nutrient feeding strategies for the increased production of Polyhydroxybutyrate (PHB) by Alcaligenes latus. Appl Biochem Biotechnol 183:530–542PubMedCrossRef
go back to reference García IL, López JA, Dorado MP, Kopsahelis N, Alexandri M, Papanikolaou S, Villar MA, Koutinas AA (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Biores Technol 130:16–22CrossRef García IL, López JA, Dorado MP, Kopsahelis N, Alexandri M, Papanikolaou S, Villar MA, Koutinas AA (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Biores Technol 130:16–22CrossRef
go back to reference Grothe E, Chisti Y (2000) Poly(β-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Eng 22(5):441–449CrossRef Grothe E, Chisti Y (2000) Poly(β-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Eng 22(5):441–449CrossRef
go back to reference Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosc Biotechnol Biochem 72(1):253–256CrossRef Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosc Biotechnol Biochem 72(1):253–256CrossRef
go back to reference Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M (2018) High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 37:117–122CrossRef Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M (2018) High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 37:117–122CrossRef
go back to reference Hänggi U (1990) Pilot scale production of PHB with Alcaligenes latus. In: Dawes E (ed) Novel biodegradable microbial polymers. Springer, Netherlands, pp 65–70CrossRef Hänggi U (1990) Pilot scale production of PHB with Alcaligenes latus. In: Dawes E (ed) Novel biodegradable microbial polymers. Springer, Netherlands, pp 65–70CrossRef
go back to reference Heinrich D, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A (2012) Large scale extraction of poly (3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express 2(1):59PubMedPubMedCentralCrossRef Heinrich D, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A (2012) Large scale extraction of poly (3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express 2(1):59PubMedPubMedCentralCrossRef
go back to reference Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea
go back to reference Herrema M, Kimmel K (2012) Method for producing polyhydroxyalkanoic acid. US Patent 8,263,373 Herrema M, Kimmel K (2012) Method for producing polyhydroxyalkanoic acid. US Patent 8,263,373
go back to reference Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G (2013) Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly [-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc Biosyst Eng 36(9):1235–1250CrossRef Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G (2013) Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly [-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc Biosyst Eng 36(9):1235–1250CrossRef
go back to reference Huschner F, Grousseau E, Brigham CJ, Plassmeier J, Popovic M, Rha C, Sinskey AJ (2015) Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem 50:165–172CrossRef Huschner F, Grousseau E, Brigham CJ, Plassmeier J, Popovic M, Rha C, Sinskey AJ (2015) Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem 50:165–172CrossRef
go back to reference Ibrahim MHA, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a Poly(3-Hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. Strain MW10. Appl Environ Microbiol 76(23):7890–7895PubMedPubMedCentralCrossRef Ibrahim MHA, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a Poly(3-Hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. Strain MW10. Appl Environ Microbiol 76(23):7890–7895PubMedPubMedCentralCrossRef
go back to reference Ienczak J, Quines L, Melo AD, Brandellero M, Mendes C, Schmidell W, Aragão G (2011) High cell density strategy for poly (3-hydroxybutyrate) production by Cupriavidus necator. Braz J Chem Eng 28(4):585–596CrossRef Ienczak J, Quines L, Melo AD, Brandellero M, Mendes C, Schmidell W, Aragão G (2011) High cell density strategy for poly (3-hydroxybutyrate) production by Cupriavidus necator. Braz J Chem Eng 28(4):585–596CrossRef
go back to reference Ienczak JL, Schmidell W, De Aragão GMF (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40:275–286PubMedCrossRef Ienczak JL, Schmidell W, De Aragão GMF (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40:275–286PubMedCrossRef
go back to reference Israni N, Thapa S, Shivakumar S (2018) Biolytic extraction of poly (3-hydroxybutyrate) from Bacillus megaterium Ti3 using the lytic enzyme of Streptomyces albus Tia1. J Genet Eng Biotechnol 16(2):265–271PubMedPubMedCentralCrossRef Israni N, Thapa S, Shivakumar S (2018) Biolytic extraction of poly (3-hydroxybutyrate) from Bacillus megaterium Ti3 using the lytic enzyme of Streptomyces albus Tia1. J Genet Eng Biotechnol 16(2):265–271PubMedPubMedCentralCrossRef
go back to reference Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates) Biochem Eng J 39(1):15–27CrossRef Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates) Biochem Eng J 39(1):15–27CrossRef
go back to reference Jia Q, Xiong H, Wang H, Shi H, Sheng X, Sun R, Chen G (2014) Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Bioresour Technol 171:159–167PubMedCrossRef Jia Q, Xiong H, Wang H, Shi H, Sheng X, Sun R, Chen G (2014) Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Bioresour Technol 171:159–167PubMedCrossRef
go back to reference Jiang X, Ramsay JA, Ramsay BA (2006) Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J Microbiol Methods 67(2):212–219PubMedCrossRef Jiang X, Ramsay JA, Ramsay BA (2006) Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J Microbiol Methods 67(2):212–219PubMedCrossRef
go back to reference Jiang XR, Wang H, Shen R, Chen GQ (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237PubMedCrossRef Jiang XR, Wang H, Shen R, Chen GQ (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237PubMedCrossRef
go back to reference Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37PubMedCrossRef Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37PubMedCrossRef
go back to reference Jiang G, Johnston B, Townrow D, Radecka I, Koller M, Chaber P, Adamus G, Kowalczuk M (2018) Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers 10(7):731PubMedCentralCrossRef Jiang G, Johnston B, Townrow D, Radecka I, Koller M, Chaber P, Adamus G, Kowalczuk M (2018) Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers 10(7):731PubMedCentralCrossRef
go back to reference Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MC (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromol 10:670–676CrossRef Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MC (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromol 10:670–676CrossRef
go back to reference Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24PubMedCrossRef Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24PubMedCrossRef
go back to reference Jung IL, Phyo KH, Kim KC, Park HK, Kim IG (2005) Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli. Res Microbiol 156(8):865–873PubMedCrossRef Jung IL, Phyo KH, Kim KC, Park HK, Kim IG (2005) Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli. Res Microbiol 156(8):865–873PubMedCrossRef
go back to reference Kachrimanidou V, Kopsahelis N, Papanikolaou S, Kookos IK, De Bruyn M, Clark JH, Koutinas AA (2014) Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol 172:121–130PubMedCrossRef Kachrimanidou V, Kopsahelis N, Papanikolaou S, Kookos IK, De Bruyn M, Clark JH, Koutinas AA (2014) Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol 172:121–130PubMedCrossRef
go back to reference Kachrimanidou V, Kopsahelis N, Vlysidis A, Papanikolaou S, Kookos IK, Martínez BM, Rondán MCE, Koutinas AA (2016) Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod Process 100:323–334CrossRef Kachrimanidou V, Kopsahelis N, Vlysidis A, Papanikolaou S, Kookos IK, Martínez BM, Rondán MCE, Koutinas AA (2016) Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod Process 100:323–334CrossRef
go back to reference Khanna S, Srivastava AK (2006) Computer simulated fed-batch cultivation for over production of PHB: a comparison of simultaneous and alternate feeding of carbon and nitrogen. Biochem Eng J 27(3):197–203CrossRef Khanna S, Srivastava AK (2006) Computer simulated fed-batch cultivation for over production of PHB: a comparison of simultaneous and alternate feeding of carbon and nitrogen. Biochem Eng J 27(3):197–203CrossRef
go back to reference Khanna S, Srivastava AK (2008) Continuous production of poly-β-hydroxybutyrate by high-cell-density cultivation of Wautersia eutropha. J Chem Technol Biotechnol 83(6):799–805CrossRef Khanna S, Srivastava AK (2008) Continuous production of poly-β-hydroxybutyrate by high-cell-density cultivation of Wautersia eutropha. J Chem Technol Biotechnol 83(6):799–805CrossRef
go back to reference Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43(9):892–898PubMedCrossRef Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43(9):892–898PubMedCrossRef
go back to reference Kim M, Cho K-S, Ryu HW, Lee EG, Chang YK (2003) Recovery of poly (3-hydroxybutyrate) from high cell density culture of Ralstonia eutropha by direct addition of sodium dodecyl sulfate. Biotech Lett 25(1):55–59CrossRef Kim M, Cho K-S, Ryu HW, Lee EG, Chang YK (2003) Recovery of poly (3-hydroxybutyrate) from high cell density culture of Ralstonia eutropha by direct addition of sodium dodecyl sulfate. Biotech Lett 25(1):55–59CrossRef
go back to reference Koller M, Maršálek L, de Sousa DMM, Braunegg G (2016) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRef Koller M, Maršálek L, de Sousa DMM, Braunegg G (2016) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRef
go back to reference Koller M, Vadija D, Braunegg G, Atlić A, Horvat P (2017) Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: tools to understand and optimize multistage-continuous PHA biosynthesis. Euro Biotech J 1(3):1–9 Koller M, Vadija D, Braunegg G, Atlić A, Horvat P (2017) Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: tools to understand and optimize multistage-continuous PHA biosynthesis. Euro Biotech J 1(3):1–9
go back to reference Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M (2015) Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int J Biol Macromol 74:202–210PubMedCrossRef Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M (2015) Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int J Biol Macromol 74:202–210PubMedCrossRef
go back to reference Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA (2017) Recent advances and challenges towards sustainable Polyhydroxyalkanoate (PHA) production. Bioeng 4(2):1–43PubMedCentralCrossRef Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA (2017) Recent advances and challenges towards sustainable Polyhydroxyalkanoate (PHA) production. Bioeng 4(2):1–43PubMedCentralCrossRef
go back to reference Kumar P, Kim BS (2019) Paracoccus sp. Strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Appl Food Biotechnol 6(1):53–60 Kumar P, Kim BS (2019) Paracoccus sp. Strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Appl Food Biotechnol 6(1):53–60
go back to reference Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634CrossRef Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634CrossRef
go back to reference Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microbial Technol 39(7):1471–1475CrossRef Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microbial Technol 39(7):1471–1475CrossRef
go back to reference Lam W, Wang Y, Chan PL, Chan SW, Tsang YF, Chua H, Yu PHF (2017) Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Environ Technol 38(13–14): 1779–1791PubMedCrossRef Lam W, Wang Y, Chan PL, Chan SW, Tsang YF, Chua H, Yu PHF (2017) Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Environ Technol 38(13–14): 1779–1791PubMedCrossRef
go back to reference Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol 180:52–65PubMedCrossRef Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol 180:52–65PubMedCrossRef
go back to reference Leong YK, Lan JCW, Loh HS, Ling TC, Ooi CW, Show PL (2017) Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction. J Biosci Bioeng 123:370–375PubMedCrossRef Leong YK, Lan JCW, Loh HS, Ling TC, Ooi CW, Show PL (2017) Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction. J Biosci Bioeng 123:370–375PubMedCrossRef
go back to reference Leong Y, Chang CK, Arumugasamy S, Lan J, Loh HS, Muhammad D, Show P (2018) Statistical design of experimental and bootstrap neural network modelling approach for thermo separating aqueous two-phase extraction of polyhydroxyalkanoates. Polymers 10(2):132PubMedCentralCrossRef Leong Y, Chang CK, Arumugasamy S, Lan J, Loh HS, Muhammad D, Show P (2018) Statistical design of experimental and bootstrap neural network modelling approach for thermo separating aqueous two-phase extraction of polyhydroxyalkanoates. Polymers 10(2):132PubMedCentralCrossRef
go back to reference Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ (2010) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12(4):352–359PubMedCrossRef Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ (2010) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12(4):352–359PubMedCrossRef
go back to reference Li S, Cai L, Wu L, Zeng G, Chen J, Wu Q, Chen GQ (2014) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromol 15:2310–2319CrossRef Li S, Cai L, Wu L, Zeng G, Chen J, Wu Q, Chen GQ (2014) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromol 15:2310–2319CrossRef
go back to reference Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, Chen GQ (2016) Semirational approach for ultrahigh Poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol 5:1308–1317PubMedCrossRef Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, Chen GQ (2016) Semirational approach for ultrahigh Poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol 5:1308–1317PubMedCrossRef
go back to reference Liu S, Abrahamson LP, Scott GM (2012) Biorefinery: ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass Bioenergy 39:1–4CrossRef Liu S, Abrahamson LP, Scott GM (2012) Biorefinery: ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass Bioenergy 39:1–4CrossRef
go back to reference Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2:31–57 Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2:31–57
go back to reference López-Abelairas M, García-Torreiro M, Lú-Chau T, Lema JM, Steinbüchel A (2015) Comparison of several methods for the separation of poly (3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259CrossRef López-Abelairas M, García-Torreiro M, Lú-Chau T, Lema JM, Steinbüchel A (2015) Comparison of several methods for the separation of poly (3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259CrossRef
go back to reference Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A (2013) PHA recovery from biomass. Biomacromol 14:2963–2972CrossRef Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A (2013) PHA recovery from biomass. Biomacromol 14:2963–2972CrossRef
go back to reference Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME (2019) Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 282:361–369PubMedCrossRef Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME (2019) Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 282:361–369PubMedCrossRef
go back to reference Martinez GA, Bertin L, Scoma A, Rebecchi S, Braunegg G, Fava F (2015) Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 97:92–100CrossRef Martinez GA, Bertin L, Scoma A, Rebecchi S, Braunegg G, Fava F (2015) Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 97:92–100CrossRef
go back to reference Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547PubMedPubMedCentralCrossRef Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547PubMedPubMedCentralCrossRef
go back to reference Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15:1204–1215PubMedCrossRef Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15:1204–1215PubMedCrossRef
go back to reference Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381PubMedPubMedCentralCrossRef Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381PubMedPubMedCentralCrossRef
go back to reference Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MA (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123PubMedCrossRef Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MA (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123PubMedCrossRef
go back to reference Mohammadi M, Hassan MA, Phang LY, Ariffin H, Shirai Y, Ando Y (2012) Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol. Biotechnol Lett 34(2):253–259PubMedCrossRef Mohammadi M, Hassan MA, Phang LY, Ariffin H, Shirai Y, Ando Y (2012) Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol. Biotechnol Lett 34(2):253–259PubMedCrossRef
go back to reference Moita R, Lemos PC (2012) Biopolymers production from mixed cultures and pyrolysis by-products. J Biotechnol 157(4):578–583PubMedCrossRef Moita R, Lemos PC (2012) Biopolymers production from mixed cultures and pyrolysis by-products. J Biotechnol 157(4):578–583PubMedCrossRef
go back to reference Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2011) Microbial community engineering for biopolymer production from glycerol. Appl Microbiol Biotechnol 92:631–639PubMedCrossRef Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2011) Microbial community engineering for biopolymer production from glycerol. Appl Microbiol Biotechnol 92:631–639PubMedCrossRef
go back to reference Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2013) Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water Res 47(3):1209–1217PubMedCrossRef Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2013) Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water Res 47(3):1209–1217PubMedCrossRef
go back to reference Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Biores Technol 181:78–89CrossRef Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Biores Technol 181:78–89CrossRef
go back to reference Mozumder MSI, De Wever H, Volcke EI Garcia-Gonzalez L (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 49(3):365–373CrossRef Mozumder MSI, De Wever H, Volcke EI Garcia-Gonzalez L (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 49(3):365–373CrossRef
go back to reference Murugan P, Han L, Gan CY, Maurer FH, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105PubMedCrossRef Murugan P, Han L, Gan CY, Maurer FH, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105PubMedCrossRef
go back to reference Myung J, Flanagan JC, Waymouth RM, Criddle CS (2017) Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7(118):1–10 Myung J, Flanagan JC, Waymouth RM, Criddle CS (2017) Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7(118):1–10
go back to reference Narayanan A, Kumar VS, Ramana KV (2014) Production and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus mycoides DFC1 using rice husk hydrolyzate. Waste Biomass Valorization 5(1):109–118CrossRef Narayanan A, Kumar VS, Ramana KV (2014) Production and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus mycoides DFC1 using rice husk hydrolyzate. Waste Biomass Valorization 5(1):109–118CrossRef
go back to reference Nikel PI, De Almeida A, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72(6):3949–3954PubMedPubMedCentralCrossRef Nikel PI, De Almeida A, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72(6):3949–3954PubMedPubMedCentralCrossRef
go back to reference Ntaikou I, Peroni CV, Kourmentza C, Ilieva VI, Morelli A, Chiellini E, Lyberatos G (2014) Microbial bio-based plastics from olive-mill wastewater: generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. J Biotechnol 188:138–147PubMedCrossRef Ntaikou I, Peroni CV, Kourmentza C, Ilieva VI, Morelli A, Chiellini E, Lyberatos G (2014) Microbial bio-based plastics from olive-mill wastewater: generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. J Biotechnol 188:138–147PubMedCrossRef
go back to reference Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z (2010) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 32(12):1925–1932PubMedCrossRef Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z (2010) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 32(12):1925–1932PubMedCrossRef
go back to reference Obruca S, Marova I, Melusova S, Mravcova L (2011) Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 61(4):947–953CrossRef Obruca S, Marova I, Melusova S, Mravcova L (2011) Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 61(4):947–953CrossRef
go back to reference Obruca S, Benesova P, Marsalek L, Marova I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29:135–144CrossRef Obruca S, Benesova P, Marsalek L, Marova I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29:135–144CrossRef
go back to reference Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG (2015) Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 181:283–290PubMedCrossRef Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG (2015) Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 181:283–290PubMedCrossRef
go back to reference Oliveira CS, Silva CE, Carvalho G, Reis MA (2016) Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnol 37:69–79CrossRef Oliveira CS, Silva CE, Carvalho G, Reis MA (2016) Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnol 37:69–79CrossRef
go back to reference Ong SY, Zainab-L I, Pyary S, Sudesh K (2018) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102(5):2117–2127PubMedCrossRef Ong SY, Zainab-L I, Pyary S, Sudesh K (2018) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102(5):2117–2127PubMedCrossRef
go back to reference Pais J, Serafim LS, Freitas F, Reis MA (2016) Conversion of cheese whey into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol 33(1):224–230CrossRef Pais J, Serafim LS, Freitas F, Reis MA (2016) Conversion of cheese whey into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol 33(1):224–230CrossRef
go back to reference Penloglou G, Chatzidoukas C, Kiparissides C (2012) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnol Adv 30(1):329–337PubMedCrossRef Penloglou G, Chatzidoukas C, Kiparissides C (2012) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnol Adv 30(1):329–337PubMedCrossRef
go back to reference Pfeiffer D, Jendrossek D (2012) Localization of poly(3-Hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, phap6 and phap7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921PubMedPubMedCentralCrossRef Pfeiffer D, Jendrossek D (2012) Localization of poly(3-Hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, phap6 and phap7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921PubMedPubMedCentralCrossRef
go back to reference Phithakrotchanakoon C, Champreda V, Aiba SI, Pootanakit K, Tanapongpipat S (2015) Production of polyhydroxyalkanoates from crude glycerol using recombinant Escherichia coli. J Polym Environ 23(1):38–44CrossRef Phithakrotchanakoon C, Champreda V, Aiba SI, Pootanakit K, Tanapongpipat S (2015) Production of polyhydroxyalkanoates from crude glycerol using recombinant Escherichia coli. J Polym Environ 23(1):38–44CrossRef
go back to reference Porras MA, Ramos FD, Diaz MS, Cubitto MA, Villar MA (2019) Modeling the bioconversion of starch to P (HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain. Environ Technol 40(9):1185–1202PubMedCrossRef Porras MA, Ramos FD, Diaz MS, Cubitto MA, Villar MA (2019) Modeling the bioconversion of starch to P (HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain. Environ Technol 40(9):1185–1202PubMedCrossRef
go back to reference Rahman A, Linton E, Hatch AD, Sims RC, Miller CD (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J Biol Eng 7(24):1–9 Rahman A, Linton E, Hatch AD, Sims RC, Miller CD (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J Biol Eng 7(24):1–9
go back to reference Ramachandran H, Amirul AA (2013) Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(3HB-co-4HB). J Chem Technol Biotechnol 88(6):1030–1038CrossRef Ramachandran H, Amirul AA (2013) Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(3HB-co-4HB). J Chem Technol Biotechnol 88(6):1030–1038CrossRef
go back to reference Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids. Appl Environ Microbiol 56(7):2093–2098PubMedPubMedCentral Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids. Appl Environ Microbiol 56(7):2093–2098PubMedPubMedCentral
go back to reference Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20CrossRef Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20CrossRef
go back to reference Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146PubMedCrossRef Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146PubMedCrossRef
go back to reference Reddy MV, Mawatari Y, Yajima Y, Satoh K, Mohan SV, Chang YC (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162CrossRef Reddy MV, Mawatari Y, Yajima Y, Satoh K, Mohan SV, Chang YC (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162CrossRef
go back to reference Ren Y, Ling C, Hajnal I, Wu Q, Chen GQ (2018) Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol 102(10):4499–4510PubMedCrossRef Ren Y, Ling C, Hajnal I, Wu Q, Chen GQ (2018) Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol 102(10):4499–4510PubMedCrossRef
go back to reference Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110(2):461–470PubMedCrossRef Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110(2):461–470PubMedCrossRef
go back to reference Ryu HW, Cho KS, Lee EG, Chang YK (2000) Recovery of Poly (3-hydroxybutyrate) from coagulated Ralstonia eutropha using a chemical digestion method. Biotechnol Prog 16(4):676–679PubMedCrossRef Ryu HW, Cho KS, Lee EG, Chang YK (2000) Recovery of Poly (3-hydroxybutyrate) from coagulated Ralstonia eutropha using a chemical digestion method. Biotechnol Prog 16(4):676–679PubMedCrossRef
go back to reference Salakkam A, Webb C (2018) Production of poly (3-hydroxybutyrate) from a complete feedstock derived from biodiesel by-products (crude glycerol and rapeseed meal). Biochem Eng J 137:358–364CrossRef Salakkam A, Webb C (2018) Production of poly (3-hydroxybutyrate) from a complete feedstock derived from biodiesel by-products (crude glycerol and rapeseed meal). Biochem Eng J 137:358–364CrossRef
go back to reference Salgaonkar BB, Mani K, Bragança JM (2019) Sustainable bioconversion of cassava waste to poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense Strain E3. J Polym Environ 27(2):299–308CrossRef Salgaonkar BB, Mani K, Bragança JM (2019) Sustainable bioconversion of cassava waste to poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense Strain E3. J Polym Environ 27(2):299–308CrossRef
go back to reference Schroll G, Resch S, Gruber K, Wanner G, Lubitz W (1998) Heterologous ΦX174 gene E-expression in Ralstonia eutropha: E-mediated lysis is not restricted to γ-subclass of proteobacteria. J Biotechnol 66(2–3):211–217PubMedCrossRef Schroll G, Resch S, Gruber K, Wanner G, Lubitz W (1998) Heterologous ΦX174 gene E-expression in Ralstonia eutropha: E-mediated lysis is not restricted to γ-subclass of proteobacteria. J Biotechnol 66(2–3):211–217PubMedCrossRef
go back to reference Serafim LS, Lemos PC, Oliveira RF, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87:145–160PubMedCrossRef Serafim LS, Lemos PC, Oliveira RF, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87:145–160PubMedCrossRef
go back to reference Shang L, Fan DD, Kim MI, Chang HN (2007) Modeling of poly (3-hydroxybutyrate) production by high cell density fed-batch culture of Ralstonia eutropha. Biotechnol Bioproc Eng 12(4):417–423CrossRef Shang L, Fan DD, Kim MI, Chang HN (2007) Modeling of poly (3-hydroxybutyrate) production by high cell density fed-batch culture of Ralstonia eutropha. Biotechnol Bioproc Eng 12(4):417–423CrossRef
go back to reference Shasaltaneh MD, Moosavi-Nejad Z, Gharavi S, Fooladi J (2013) Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis. Iran J Microbiol 5:285–292PubMedPubMedCentral Shasaltaneh MD, Moosavi-Nejad Z, Gharavi S, Fooladi J (2013) Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis. Iran J Microbiol 5:285–292PubMedPubMedCentral
go back to reference Solaiman DK, Ashby RD, Hotchkiss JAT, Foglia TA (2006) Biosynthesis of medium-chain-length poly (hydroxyalkanoates) from soy molasses. Biotechnol Lett 28(3):157–162PubMedCrossRef Solaiman DK, Ashby RD, Hotchkiss JAT, Foglia TA (2006) Biosynthesis of medium-chain-length poly (hydroxyalkanoates) from soy molasses. Biotechnol Lett 28(3):157–162PubMedCrossRef
go back to reference Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M (2013) Mathematical modeling of poly [(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol 133:482–494PubMedCrossRef Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M (2013) Mathematical modeling of poly [(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol 133:482–494PubMedCrossRef
go back to reference Tamis J, Lužkov K, Jiang Y, van Loosdrecht MC, Kleerebezem R (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192:161–169CrossRef Tamis J, Lužkov K, Jiang Y, van Loosdrecht MC, Kleerebezem R (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192:161–169CrossRef
go back to reference Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Biores Technol 102(17):8130–8136CrossRef Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Biores Technol 102(17):8130–8136CrossRef
go back to reference Tripathi L, Wu LP, Chen J, Chen GQ (2012) Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact 11(44):1–11 Tripathi L, Wu LP, Chen J, Chen GQ (2012) Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact 11(44):1–11
go back to reference Tripathi L, Wu LP, Dechuan M, Chen J, Wu Q, Chen GQ (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol 142:225–231PubMedCrossRef Tripathi L, Wu LP, Dechuan M, Chen J, Wu Q, Chen GQ (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol 142:225–231PubMedCrossRef
go back to reference Vadija D, Koller M, Novak M, Braunegg G, Horvat P (2016) Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 100(23):10065–10080CrossRef Vadija D, Koller M, Novak M, Braunegg G, Horvat P (2016) Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 100(23):10065–10080CrossRef
go back to reference Valentino F, Morgan-Sagastume F, Campanari S, Villano M, Werker A, Majone M (2017) Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol 37:9–23CrossRef Valentino F, Morgan-Sagastume F, Campanari S, Villano M, Werker A, Majone M (2017) Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol 37:9–23CrossRef
go back to reference van Hee P, Elumbaring AC, van der Lans RG, Van der Wielen LA (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Colloid Interface Sci 297(2):595–606PubMedCrossRef van Hee P, Elumbaring AC, van der Lans RG, Van der Wielen LA (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Colloid Interface Sci 297(2):595–606PubMedCrossRef
go back to reference Van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35:41–47CrossRef Van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35:41–47CrossRef
go back to reference Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1(1):1–8CrossRef Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1(1):1–8CrossRef
go back to reference Villano M, Valentino F, Barbetta A, Martino L, Scandola M, Majone M (2014) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnol 31:289–296CrossRef Villano M, Valentino F, Barbetta A, Martino L, Scandola M, Majone M (2014) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnol 31:289–296CrossRef
go back to reference Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Biores Technol 146:215–222CrossRef Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Biores Technol 146:215–222CrossRef
go back to reference Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65PubMedCrossRef Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65PubMedCrossRef
go back to reference Wang Y, Chung A, Chen GQ (2017) Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6(7):1601017CrossRef Wang Y, Chung A, Chen GQ (2017) Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6(7):1601017CrossRef
go back to reference Wei XX, Shi ZY, Yuan MQ, Chen GQ (2009) Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl Microbiol Biotechnol 82(4):703–712PubMedCrossRef Wei XX, Shi ZY, Yuan MQ, Chen GQ (2009) Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl Microbiol Biotechnol 82(4):703–712PubMedCrossRef
go back to reference Xu J, Guo B, Zhang Z, Wu Q, Zhou Q, Chen J, Chen G, Li G (2005) A mathematical model for regulating monomer composition of the microbially synthesized polyhydroxyalkanoate copolymers. Biotechnol Bioeng 90(7):821–829PubMedCrossRef Xu J, Guo B, Zhang Z, Wu Q, Zhou Q, Chen J, Chen G, Li G (2005) A mathematical model for regulating monomer composition of the microbially synthesized polyhydroxyalkanoate copolymers. Biotechnol Bioeng 90(7):821–829PubMedCrossRef
go back to reference Yang YH, Brigham C, Willis L, Rha C, Sinskey A (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol Lett 33(5):937–942PubMedCrossRef Yang YH, Brigham C, Willis L, Rha C, Sinskey A (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol Lett 33(5):937–942PubMedCrossRef
go back to reference Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Song HS, Jeon JM, Kim JS, Lee YK, Yang, YH (2019) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int J Biol Macromol Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Song HS, Jeon JM, Kim JS, Lee YK, Yang, YH (2019) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int J Biol Macromol
go back to reference Ye J, Huang W, Wang D, Chen F, Yin J, Li T, Zhang H, Chen GQ (2018) Pilot scale-up of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) production by halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol J 13(5):1800074CrossRef Ye J, Huang W, Wang D, Chen F, Yin J, Li T, Zhang H, Chen GQ (2018) Pilot scale-up of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) production by halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol J 13(5):1800074CrossRef
go back to reference Yeh CY, Lan JCW (2014) Direct recovery of polyhydroxyalkanoates synthase from recombinant Escherichia coli feedstock by using aqueous two-phase systems. J Taiwan Inst Chem Eng 45(4):1119–1125CrossRef Yeh CY, Lan JCW (2014) Direct recovery of polyhydroxyalkanoates synthase from recombinant Escherichia coli feedstock by using aqueous two-phase systems. J Taiwan Inst Chem Eng 45(4):1119–1125CrossRef
go back to reference Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454CrossRef Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454CrossRef
go back to reference Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7(108):1–12 Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7(108):1–12
go back to reference Zafar M, Kumar S, Kumar S, Dhiman AK (2012a) Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatal Agr Biotechnol 1(1):70–79CrossRef Zafar M, Kumar S, Kumar S, Dhiman AK (2012a) Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatal Agr Biotechnol 1(1):70–79CrossRef
go back to reference Zafar M, Kumar S, Kumar S, Dhiman AK (2012b) Artificial intelligence based modeling and optimization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: A genetic algorithm paradigm. Bioresour Technol 104:631–641PubMedCrossRef Zafar M, Kumar S, Kumar S, Dhiman AK (2012b) Artificial intelligence based modeling and optimization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: A genetic algorithm paradigm. Bioresour Technol 104:631–641PubMedCrossRef
go back to reference Zafar M, Kumar S, Kumar S, Dhiman AK (2012c) Modeling and optimization of poly (3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. J Ind Microbiol Biotechnol 39(7):987–1001PubMedCrossRef Zafar M, Kumar S, Kumar S, Dhiman AK (2012c) Modeling and optimization of poly (3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. J Ind Microbiol Biotechnol 39(7):987–1001PubMedCrossRef
go back to reference Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882PubMedCrossRef Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882PubMedCrossRef
Metadata
Title
Production Strategies for Commercialization of PHA
Author
Geeta Gahlawat
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-33897-8_4

Premium Partners