Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Progress and Current Status of Materials and Properties of Soft Actuators

Author : Hidenori Okuzaki

Published in: Soft Actuators

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, brief history and current status of soft actuators made of various materials driven by different stimuli are described with typical references as milestones of the progress. The soft actuators originated from unique characteristics of cross-linked polymer gels for understanding their physical and chemical properties of dimensional changes and phase transitions induced by various environmental stimuli such as pH, salt, solvent, heat, light, and electric field. The ‘explosion’ of research and development of soft actuators in the 1990s extended over a variety of materials such as conductive polymers, elastomers, carbon nanotubes, and biomaterials, which had driven further progress in soft actuators not only from the fundamental viewpoint of basic science and materials chemistry and physics but also from the engineering viewpoint for the practical applications to light-weight, low-cost, no-noise, less-pollution, and high-efficiency micro- and macro-artificial muscles and soft robotic systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Katchalsky A, Zwick M (1955) Mechanochemistry and ion exchange. J Polym Sci 16:221–234CrossRef Katchalsky A, Zwick M (1955) Mechanochemistry and ion exchange. J Polym Sci 16:221–234CrossRef
2.
go back to reference Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). In: Olive S, Henrici-Olive G (eds) Advance in Polymer Science, 82. Springer, Berlin/Heiderberg, pp 1–46 Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). In: Olive S, Henrici-Olive G (eds) Advance in Polymer Science, 82. Springer, Berlin/Heiderberg, pp 1–46
3.
go back to reference Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta E, Becht C (1990) Conducting polymer electromechanical actuators. In: Bredas JL, Chance RR (eds) Conjugated polymeric materials: opportunities in electronics, optoelectronics, and molecular electronics. Kluwer Academic, The Netherlands, pp 559–582CrossRef Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta E, Becht C (1990) Conducting polymer electromechanical actuators. In: Bredas JL, Chance RR (eds) Conjugated polymeric materials: opportunities in electronics, optoelectronics, and molecular electronics. Kluwer Academic, The Netherlands, pp 559–582CrossRef
4.
go back to reference Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta EJ, Becht C (1991) Micro electromechanical actuators based on conducting polymers. In: Lazarev PI (ed) Molecular electronics. Kluwer Academic, The Netherlands, pp 267–289CrossRef Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta EJ, Becht C (1991) Micro electromechanical actuators based on conducting polymers. In: Lazarev PI (ed) Molecular electronics. Kluwer Academic, The Netherlands, pp 267–289CrossRef
5.
go back to reference DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) (1991) Polymer gels: fundamentals and biomedical applications. Plenum, New York/London DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) (1991) Polymer gels: fundamentals and biomedical applications. Plenum, New York/London
6.
go back to reference Otero TF, Rodríguez J (1993) Electrochemomechanical and electrochemopositioning devices: artificial muscles. In: Aldissi M (ed) Intrinsically conducting polymers: an emerging technology. Kluwer Academic, The Netherlands, pp 179–190CrossRef Otero TF, Rodríguez J (1993) Electrochemomechanical and electrochemopositioning devices: artificial muscles. In: Aldissi M (ed) Intrinsically conducting polymers: an emerging technology. Kluwer Academic, The Netherlands, pp 179–190CrossRef
7.
go back to reference Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–836CrossRef Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–836CrossRef
8.
go back to reference Bar-Cohen Y (ed) (2001) Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges. SPIE, Bellingham Bar-Cohen Y (ed) (2001) Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges. SPIE, Bellingham
9.
go back to reference Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494CrossRef Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494CrossRef
10.
go back to reference Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728CrossRef Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728CrossRef
11.
go back to reference Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36PubMedCrossRef Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36PubMedCrossRef
12.
go back to reference Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407CrossRef Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407CrossRef
13.
go back to reference Kakugo A, Sugimoto S, Gong JP, Osada Y (2002) Gel machines constructed from chemically cross-linked actins and myosins. Adv Mater 14:1124–1126CrossRef Kakugo A, Sugimoto S, Gong JP, Osada Y (2002) Gel machines constructed from chemically cross-linked actins and myosins. Adv Mater 14:1124–1126CrossRef
14.
go back to reference Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184PubMedCrossRef Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184PubMedCrossRef
15.
go back to reference Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558PubMedCrossRef Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558PubMedCrossRef
16.
go back to reference Morishima K, Tanaka Y, Sato K, Ebara M, Shimizu T, Yamato M, Kikuchi A, Okano T, Kitamori T (2003) Bio actuated microsystem using cultured cardiomyocytes. In: Proceedings of the micro total analysis systems. Squaw Valley, CA, USA, pp 1125–1128 Morishima K, Tanaka Y, Sato K, Ebara M, Shimizu T, Yamato M, Kikuchi A, Okano T, Kitamori T (2003) Bio actuated microsystem using cultured cardiomyocytes. In: Proceedings of the micro total analysis systems. Squaw Valley, CA, USA, pp 1125–1128
17.
go back to reference Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, DeRossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344PubMedCrossRef Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, DeRossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344PubMedCrossRef
18.
go back to reference Aliev AA, Oh J, Kozlov E, Kunznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque H, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578PubMedCrossRef Aliev AA, Oh J, Kozlov E, Kunznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque H, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578PubMedCrossRef
19.
go back to reference Lima MD, Li N, Andrade MJ, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim J, Chen Y, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JDW, Voit WE, Galvao DS, Baughman RH (2012) Electrically, chemically, and potonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338:928–932PubMedCrossRef Lima MD, Li N, Andrade MJ, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim J, Chen Y, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JDW, Voit WE, Galvao DS, Baughman RH (2012) Electrically, chemically, and potonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338:928–932PubMedCrossRef
20.
21.
go back to reference Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988CrossRef Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988CrossRef
22.
go back to reference Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64:7–85CrossRef Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64:7–85CrossRef
23.
go back to reference Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839PubMedCrossRef Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839PubMedCrossRef
24.
go back to reference Pelrine R, Kornbluh R, Kofod G (2000) High-strain actuator materials based on dielectric elastomers. Adv Mater 12:1223–1225CrossRef Pelrine R, Kornbluh R, Kofod G (2000) High-strain actuator materials based on dielectric elastomers. Adv Mater 12:1223–1225CrossRef
25.
go back to reference Hirai T, Sadatoh H, Ueda T, Kasazaki T, Kurita Y, Hirai M, Hayashi S (1996) Polyurethane-elastomer-actuator. Die Angew Makromol Chem 240:221–229CrossRef Hirai T, Sadatoh H, Ueda T, Kasazaki T, Kurita Y, Hirai M, Hayashi S (1996) Polyurethane-elastomer-actuator. Die Angew Makromol Chem 240:221–229CrossRef
26.
go back to reference Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280:2101–2104PubMedCrossRef Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280:2101–2104PubMedCrossRef
27.
go back to reference Lehmann W, Hartmann L, Kremer F, Stein P, Finkelmann H (1999) Direct and inverse electromechanical effect in ferroelectric liquid crystalline elastomers. J Appl Phys 86:1647–1652CrossRef Lehmann W, Hartmann L, Kremer F, Stein P, Finkelmann H (1999) Direct and inverse electromechanical effect in ferroelectric liquid crystalline elastomers. J Appl Phys 86:1647–1652CrossRef
28.
go back to reference Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410:447–450PubMedCrossRef Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410:447–450PubMedCrossRef
29.
go back to reference Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci Polym Phys 36:1591–1594CrossRef Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci Polym Phys 36:1591–1594CrossRef
30.
go back to reference Okuzaki H, Suzuki H, Ito T (2009) Electromechanical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) films. J Phys Chem B 113:11378–11383PubMedCrossRef Okuzaki H, Suzuki H, Ito T (2009) Electromechanical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) films. J Phys Chem B 113:11378–11383PubMedCrossRef
31.
32.
go back to reference Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci Polym Phys 34:1747–1749CrossRef Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci Polym Phys 34:1747–1749CrossRef
33.
go back to reference Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311CrossRef Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311CrossRef
34.
go back to reference Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-sized structures. Science 268:735–1738CrossRef Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-sized structures. Science 268:735–1738CrossRef
35.
go back to reference Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscles”: electrochemical actuators using polyaniline films. Synth Met 71:2211–2212CrossRef Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscles”: electrochemical actuators using polyaniline films. Synth Met 71:2211–2212CrossRef
36.
go back to reference Takashima W, Kaneko M, Kaneto K, MacDiarmid AG (1995) The electrochemical actuator using electrochemically-deposited poly-aniline film. Synth Met 71:2265–2266CrossRef Takashima W, Kaneko M, Kaneto K, MacDiarmid AG (1995) The electrochemical actuator using electrochemically-deposited poly-aniline film. Synth Met 71:2265–2266CrossRef
37.
go back to reference Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Geoffrey JD, Spinks M, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987PubMedCrossRef Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Geoffrey JD, Spinks M, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987PubMedCrossRef
38.
go back to reference Hara S, Zama T, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517CrossRef Hara S, Zama T, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517CrossRef
39.
go back to reference Pei Q, Inganäs O (1992) Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514CrossRef Pei Q, Inganäs O (1992) Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514CrossRef
40.
go back to reference Pei Q, Inganäs O (1992) Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv Mater 4:277–278CrossRef Pei Q, Inganäs O (1992) Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv Mater 4:277–278CrossRef
41.
go back to reference Otero TF, Angulo E, Rodriguez J, Santamaria C (1992) Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material - artificial muscle. J Electroanal Chem 341:369–375CrossRef Otero TF, Angulo E, Rodriguez J, Santamaria C (1992) Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material - artificial muscle. J Electroanal Chem 341:369–375CrossRef
42.
go back to reference Hara S, Zama T, Sewa S, Takashima W, Kaneto K (2003) Highly stretchable and powerful polypyrrole linear actuators. Chem Lett 32:576–577CrossRef Hara S, Zama T, Sewa S, Takashima W, Kaneto K (2003) Highly stretchable and powerful polypyrrole linear actuators. Chem Lett 32:576–577CrossRef
43.
go back to reference Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRef Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRef
44.
go back to reference Zama T, Tanaka N, Takashima W, Kaneto K (2006) Fast and large stretching bis(trifluoromethanesulfonyl)imide-doped polypyrrole actuators and their applications to small devices. Polym J 38:669–677CrossRef Zama T, Tanaka N, Takashima W, Kaneto K (2006) Fast and large stretching bis(trifluoromethanesulfonyl)imide-doped polypyrrole actuators and their applications to small devices. Polym J 38:669–677CrossRef
45.
go back to reference Hirai T (1995) Actuator materials from polymer gels. Polymer gels responding to electric and magnetic field. J Mater Sci Soc Jpn 32:59–63 Hirai T (1995) Actuator materials from polymer gels. Polymer gels responding to electric and magnetic field. J Mater Sci Soc Jpn 32:59–63
46.
go back to reference Mitsumata T, Nagata A, Sakai K, Takimoto J (2005) Giant complex modulus reduction of κ-carrageenan magnetic gels. Macromol Rapid Commun 26:1538–1541CrossRef Mitsumata T, Nagata A, Sakai K, Takimoto J (2005) Giant complex modulus reduction of κ-carrageenan magnetic gels. Macromol Rapid Commun 26:1538–1541CrossRef
47.
go back to reference Zrinyi M, Barsi L, Buki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756CrossRef Zrinyi M, Barsi L, Buki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756CrossRef
48.
go back to reference Agolini F, Gay FP (1970) Synthesis and properties of azoaromatic polymers. Macromolecules 3:349–351CrossRef Agolini F, Gay FP (1970) Synthesis and properties of azoaromatic polymers. Macromolecules 3:349–351CrossRef
49.
go back to reference Smets G, De Blauwe F (1974) Chemical reactions in solid polymeric systems. Photomechanical phenomena. Pure Appl Chem 39:225–238CrossRef Smets G, De Blauwe F (1974) Chemical reactions in solid polymeric systems. Photomechanical phenomena. Pure Appl Chem 39:225–238CrossRef
50.
51.
go back to reference Irie M, Kunwatchakun D (1986) Photoresponsive polymers. 8 reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19:2476–2480CrossRef Irie M, Kunwatchakun D (1986) Photoresponsive polymers. 8 reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19:2476–2480CrossRef
52.
go back to reference Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRef Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRef
53.
go back to reference Juodkazis S, Mukai N, Wakaki R, Yamaguchi A, Matsuo S, Misawa H (2000) Reversible phase transitions in polymer gels induced by ratiation forces. Nature 408:178–181PubMedCrossRef Juodkazis S, Mukai N, Wakaki R, Yamaguchi A, Matsuo S, Misawa H (2000) Reversible phase transitions in polymer gels induced by ratiation forces. Nature 408:178–181PubMedCrossRef
54.
go back to reference Hamlen RP, Kent CE, Shafer SN (1965) Electolytically activated contractile polymer. Nature 206:1149–1150CrossRef Hamlen RP, Kent CE, Shafer SN (1965) Electolytically activated contractile polymer. Nature 206:1149–1150CrossRef
55.
go back to reference Yannas IV, Grodzinski AJ (1973) Electromechanical energy conversion with collagen fibers in an aqueous medium. J Mechanochem Cell Mobilily 2:113–125 Yannas IV, Grodzinski AJ (1973) Electromechanical energy conversion with collagen fibers in an aqueous medium. J Mechanochem Cell Mobilily 2:113–125
56.
go back to reference Grodzinski AJ, Shoenfeld NA (1977) Tensile forces induced in collagen by means of electromechanochemical transductive coupling. Polymer 18:435–443CrossRef Grodzinski AJ, Shoenfeld NA (1977) Tensile forces induced in collagen by means of electromechanochemical transductive coupling. Polymer 18:435–443CrossRef
57.
go back to reference Osada Y, Hasebe M (1985) Electrically activated mechanochemical devices using polyelectrolyte gels. Chem Lett 14:1285–1288CrossRef Osada Y, Hasebe M (1985) Electrically activated mechanochemical devices using polyelectrolyte gels. Chem Lett 14:1285–1288CrossRef
58.
go back to reference DeRossi D, Parrini P, Chiarelli P, Buzzigoli G (1985) Electrically induced contractile phenomena in charged polymer networks: preliminary study on the feasibility of musclelike structures. Trans Am Soc Artif Intern Organs 31:60–65 DeRossi D, Parrini P, Chiarelli P, Buzzigoli G (1985) Electrically induced contractile phenomena in charged polymer networks: preliminary study on the feasibility of musclelike structures. Trans Am Soc Artif Intern Organs 31:60–65
59.
go back to reference Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef
60.
go back to reference Oguro K, Kawami Y, Takenaka H (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromachine Soc 5:27–30 Oguro K, Kawami Y, Takenaka H (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromachine Soc 5:27–30
61.
go back to reference Shiga T, Hirose Y, Okada A, Kurauchi T (1992) Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric fields. J Appl Polym Sci 44:249–253CrossRef Shiga T, Hirose Y, Okada A, Kurauchi T (1992) Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric fields. J Appl Polym Sci 44:249–253CrossRef
62.
go back to reference Hirai T, Nemoto H, Hirai M, Hayashi S (1994) Electrostriction of highly swollen polymer gel: possible application for gel actuator. J Appl Polym Sci 53:79–84CrossRef Hirai T, Nemoto H, Hirai M, Hayashi S (1994) Electrostriction of highly swollen polymer gel: possible application for gel actuator. J Appl Polym Sci 53:79–84CrossRef
63.
go back to reference Kishi R, Suzuki Y, Ichijo H, Hirasa O (1994) Electrical deformation of thermotropic liquid-crystalline polymer gels. Chem Lett 23:2257–2260CrossRef Kishi R, Suzuki Y, Ichijo H, Hirasa O (1994) Electrical deformation of thermotropic liquid-crystalline polymer gels. Chem Lett 23:2257–2260CrossRef
64.
go back to reference Asaka K, Oguro K, Nishimura Y, Mizuhara M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440CrossRef Asaka K, Oguro K, Nishimura Y, Mizuhara M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440CrossRef
65.
go back to reference Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413CrossRef Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413CrossRef
66.
go back to reference Hirai T, Ogiwara T, Fujii K, Ueki T, Kinoshita K, Takasaki M (2009) Electrically active artificial pupli showing amoeba-like pseudopodial deformation. Adv Mater 21:2886–2888CrossRef Hirai T, Ogiwara T, Fujii K, Ueki T, Kinoshita K, Takasaki M (2009) Electrically active artificial pupli showing amoeba-like pseudopodial deformation. Adv Mater 21:2886–2888CrossRef
67.
go back to reference Mukai K, Asaka K, Sugino T, Kiyohara K, Takeuchi I, Terasawa N, Futaba DN, Hata K, Fukushima T, Aida T (2009) Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater 21:1582–1585CrossRef Mukai K, Asaka K, Sugino T, Kiyohara K, Takeuchi I, Terasawa N, Futaba DN, Hata K, Fukushima T, Aida T (2009) Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater 21:1582–1585CrossRef
68.
go back to reference Tanaka T, Nishio I, Sun ST, Nishio SU (1982) Collapse of gels in an electric field. Science 218:467–469PubMedCrossRef Tanaka T, Nishio I, Sun ST, Nishio SU (1982) Collapse of gels in an electric field. Science 218:467–469PubMedCrossRef
69.
go back to reference DeRossi D, Chiarelli P, Buzzigoli G, Domenichi C, Lazzeri L (1986) Contractile behavior of electrically activated mechanochemical polymer actuators. Trans Am Soc Artif Intern Organs 32:157–162 DeRossi D, Chiarelli P, Buzzigoli G, Domenichi C, Lazzeri L (1986) Contractile behavior of electrically activated mechanochemical polymer actuators. Trans Am Soc Artif Intern Organs 32:157–162
70.
go back to reference Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320CrossRef Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320CrossRef
71.
go back to reference Shiga T, Hirose Y, Okada A, Kurauchi T (1993) Bending of ionic polymer gel caused by swelling under sinusoidally varying electric fields. J Appl Polym Sci 47:113–119CrossRef Shiga T, Hirose Y, Okada A, Kurauchi T (1993) Bending of ionic polymer gel caused by swelling under sinusoidally varying electric fields. J Appl Polym Sci 47:113–119CrossRef
72.
go back to reference Hirai T, Nemoto H, Suzuki T, Hayashi S, Hirai M (1993) Actuation of poly(vinyl alcohol) gel by electric field. J Intell Mater Syst Struct 4:277–279CrossRef Hirai T, Nemoto H, Suzuki T, Hayashi S, Hirai M (1993) Actuation of poly(vinyl alcohol) gel by electric field. J Intell Mater Syst Struct 4:277–279CrossRef
73.
go back to reference Tanaka T, Ishiwata S, Ishimoto C (1977) Critical behavior of density fluctuations in gels. Phys Rev Lett 38:771–774CrossRef Tanaka T, Ishiwata S, Ishimoto C (1977) Critical behavior of density fluctuations in gels. Phys Rev Lett 38:771–774CrossRef
74.
go back to reference Tanaka T, Fillmore DJ, Sun ST, Nishio I, Swislow G, Shah A (1980) Phase transitions in ionic gels. Phys Rev Lett 45:1636–1639CrossRef Tanaka T, Fillmore DJ, Sun ST, Nishio I, Swislow G, Shah A (1980) Phase transitions in ionic gels. Phys Rev Lett 45:1636–1639CrossRef
75.
go back to reference Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458PubMedCrossRef Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458PubMedCrossRef
76.
go back to reference Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. Adv Polym Sci 110:242–261 Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. Adv Polym Sci 110:242–261
77.
go back to reference Osada Y, Saito Y (1975) Mechanochemical energy conversion in a polymer membrane by thermo-reversible polymer-polymer interactions. Makromolekulare Chem 176:2761–2764CrossRef Osada Y, Saito Y (1975) Mechanochemical energy conversion in a polymer membrane by thermo-reversible polymer-polymer interactions. Makromolekulare Chem 176:2761–2764CrossRef
78.
go back to reference Tanaka T (1978) Collapse of gels and the criticalendpoint. Phys Rev Lett 40:820–823CrossRef Tanaka T (1978) Collapse of gels and the criticalendpoint. Phys Rev Lett 40:820–823CrossRef
79.
go back to reference Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242CrossRef Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242CrossRef
81.
go back to reference Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135CrossRef Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135CrossRef
82.
go back to reference Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRef Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRef
83.
go back to reference Steinberg IZ, Oplatka A, Katchalsky A (1966) Mechanochemical engines. Nature 210:568–571CrossRef Steinberg IZ, Oplatka A, Katchalsky A (1966) Mechanochemical engines. Nature 210:568–571CrossRef
84.
85.
86.
go back to reference Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the stage of ionization of high-polymer acid networks. Nature 165:514–516CrossRef Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the stage of ionization of high-polymer acid networks. Nature 165:514–516CrossRef
87.
go back to reference Katchalsky A (1949) Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experimentia 5:319–320CrossRef Katchalsky A (1949) Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experimentia 5:319–320CrossRef
88.
go back to reference Kuhn W (1949) Reversible dehnung und kontraktion bei anderung der ionisation eines netzwerks polyvalenter fadenmolekulionen. Experimentia 5:318–319CrossRef Kuhn W (1949) Reversible dehnung und kontraktion bei anderung der ionisation eines netzwerks polyvalenter fadenmolekulionen. Experimentia 5:318–319CrossRef
Metadata
Title
Progress and Current Status of Materials and Properties of Soft Actuators
Author
Hidenori Okuzaki
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6850-9_1

Premium Partners