Skip to main content
Top

2019 | OriginalPaper | Chapter

Progress Report on: Sulfur in Ethylene Epoxidation on Silver (SEES2)

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The primary goal of the “Sulfur in ethylene epoxidation on silver” (SEES2) project is to elucidate the mechanism(s) by which catalytic ethylene epoxidation occurs over silver surfaces. There is a particular focus on the role of sulfur. The program involves using density functional theory to predict stable surface phases under various conditions by way of ab initio atomistic thermodynamics. Once identified, the spectroscopic properties of candidate phases are computed to enable experimental verification. Minimum energy paths associated with the (re)formation and reaction of the identified phases are then computed to determine their possible roles in ethylene epoxidation. Through this approach we identified a novel \(\text {Ag(SO}_4\)) phase and showed it selectively transfers oxygen to ethylene to form the epoxide during temperature programed reaction. In the last year we have shifted the focus to the behavior of surface species under catalytic conditions, focusing on the 0 K minimum energy paths of the surface reaction network before moving on to finite temperature effects. In this effort we have identified additional phases and studied the competition between them. Of the studied species the novel \(\text {SO}_4\) phase, where sulfur is present as S(V+), is the only silver one capable of selectively reacting with ethylene to form the epoxide. We further found the \(\text {SO}_4\) species is rapidly regenerated through reaction with oxygen, which suppresses the coverage of an adsorbed \(\text {SO}_3\) that appears to be selective in total oxidation. The presence of \(\text {SO}_x\) species is also found to reduce the EO:AcH branching ratio associated with the reaction of ethylene with atomic oxygen on the unreconstructed Ag(111). Thus, it appears under conditions that are not artificially clean EO is produced in large part by oxygen transfer from the novel \(\text {SO}_4\) phase. These new insights are only possible due to the use of various levels of parallelization to extend the scaling of our code on the Cray XC40 system Hazel Hen, which has allowed us to compute the minimum energy paths of a complex network of surface reactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Rebsdat, D. Mayer, Ethylene Oxide (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012) S. Rebsdat, D. Mayer, Ethylene Oxide (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012)
2.
go back to reference C. Stegelmann, N. Schiødt, C. Campbell, P. Stoltze, J. Catal. 221, 630 (2004)CrossRef C. Stegelmann, N. Schiødt, C. Campbell, P. Stoltze, J. Catal. 221, 630 (2004)CrossRef
3.
4.
go back to reference T.E. Jones, R. Wyrwich, S. Böcklein, T.C.R. Rocha, E.A. Carbonio, A. Knop-Gericke, R. Schlögl, S. Günther, J. Wintterlin, S. Piccinin, J. Phys. Chem. C 120, 28630 (2016)CrossRef T.E. Jones, R. Wyrwich, S. Böcklein, T.C.R. Rocha, E.A. Carbonio, A. Knop-Gericke, R. Schlögl, S. Günther, J. Wintterlin, S. Piccinin, J. Phys. Chem. C 120, 28630 (2016)CrossRef
5.
go back to reference T.E. Jones, R. Wyrwich, S. Böcklein, E.A. Carbonio, M.T. Greiner, A.Y. Klyushin, W. Moritz, A. Locatelli, T.O. Mentes, M.A. Nino et al., ACS Catal. 8, 3844 (2018)CrossRef T.E. Jones, R. Wyrwich, S. Böcklein, E.A. Carbonio, M.T. Greiner, A.Y. Klyushin, W. Moritz, A. Locatelli, T.O. Mentes, M.A. Nino et al., ACS Catal. 8, 3844 (2018)CrossRef
6.
go back to reference E.A. Carbonio, T.C.R. Rocha, A.Y. Klyushin, I. Pis, E. Magnano, S. Nappini, S. Piccinin, A. Knop-Gericke, R. Schlogl, T.E. Jones, Chem. Sci. 9, 990 (2018)CrossRef E.A. Carbonio, T.C.R. Rocha, A.Y. Klyushin, I. Pis, E. Magnano, S. Nappini, S. Piccinin, A. Knop-Gericke, R. Schlogl, T.E. Jones, Chem. Sci. 9, 990 (2018)CrossRef
7.
go back to reference V.I. Bukhtiyarov, A. Knop-Gericke, Nanostructured Catalysts: Selective Oxidations (The Royal Society of Chemistry, 2011), pp. 214–247 V.I. Bukhtiyarov, A. Knop-Gericke, Nanostructured Catalysts: Selective Oxidations (The Royal Society of Chemistry, 2011), pp. 214–247
8.
go back to reference R.V. Santen, H. Kuipers, Adv. Catal. 35, 265–321 (1987). Academic Press R.V. Santen, H. Kuipers, Adv. Catal. 35, 265–321 (1987). Academic Press
9.
10.
go back to reference H. Baer, M. Bergamo, A. Forlin, L.H. Pottenger, J. Lindner, Propylene Oxide (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012)CrossRef H. Baer, M. Bergamo, A. Forlin, L.H. Pottenger, J. Lindner, Propylene Oxide (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012)CrossRef
11.
13.
go back to reference R. Reichelt, S. Günther, J. Wintterlin, W. Moritz, L. Aballe, T.O. Mentes, J. Chem. Phys. 127 (2007) R. Reichelt, S. Günther, J. Wintterlin, W. Moritz, L. Aballe, T.O. Mentes, J. Chem. Phys. 127 (2007)
14.
go back to reference M. Schmid, A. Reicho, A. Stierle, I. Costina, J. Klikovits, P. Kostelnik, O. Dubay, G. Kresse, J. Gustafson, E. Lundgren et al., Phys. Rev. Lett. 96, 146102 (2006)CrossRef M. Schmid, A. Reicho, A. Stierle, I. Costina, J. Klikovits, P. Kostelnik, O. Dubay, G. Kresse, J. Gustafson, E. Lundgren et al., Phys. Rev. Lett. 96, 146102 (2006)CrossRef
15.
go back to reference J. Schnadt, A. Michaelides, J. Knudsen, R.T. Vang, K. Reuter, E. Lægsgaard, M. Scheffler, F. Besenbacher, Phys. Rev. Lett. 96, 146101 (2006)CrossRef J. Schnadt, A. Michaelides, J. Knudsen, R.T. Vang, K. Reuter, E. Lægsgaard, M. Scheffler, F. Besenbacher, Phys. Rev. Lett. 96, 146101 (2006)CrossRef
16.
17.
go back to reference M. Pascal, C. Lamont, P. Baumgärtel, R. Terborg, J. Hoeft, O. Schaff, M. Polcik, A. Bradshaw, R. Toomes, D. Woodruff, Surf. Sci. 464, 83 (2000)CrossRef M. Pascal, C. Lamont, P. Baumgärtel, R. Terborg, J. Hoeft, O. Schaff, M. Polcik, A. Bradshaw, R. Toomes, D. Woodruff, Surf. Sci. 464, 83 (2000)CrossRef
18.
go back to reference V.I. Bukhtiyarov, M. Hävecker, V.V. Kaichev, A. Knop-Gericke, R.W. Mayer, R. Schlögl, Phys. Rev. B 67, 235422 (2003)CrossRef V.I. Bukhtiyarov, M. Hävecker, V.V. Kaichev, A. Knop-Gericke, R.W. Mayer, R. Schlögl, Phys. Rev. B 67, 235422 (2003)CrossRef
22.
25.
go back to reference S. Böcklein, S. Günther, J. Wintterlin, Angew. Chem. Int. Ed. 52, 5518 (2013)CrossRef S. Böcklein, S. Günther, J. Wintterlin, Angew. Chem. Int. Ed. 52, 5518 (2013)CrossRef
26.
go back to reference T.E. Jones, T.C.R. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlögl, S. Piccinin, ACS Catal. 5, 5846 (2015)CrossRef T.E. Jones, T.C.R. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlögl, S. Piccinin, ACS Catal. 5, 5846 (2015)CrossRef
27.
28.
go back to reference R.B. Grant, R.M. Lambert, J. Chem. Soc. Chem. Commun. 355, 662 (1983) R.B. Grant, R.M. Lambert, J. Chem. Soc. Chem. Commun. 355, 662 (1983)
29.
go back to reference P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys. Condens. Matter 21, 395502 (2009). http://www.quantum-espresso.org P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys. Condens. Matter 21, 395502 (2009). http://​www.​quantum-espresso.​org
31.
go back to reference A.O. de-la Roza, E.R. Johnson, J. Chem. Phys. 136, 174109 (2012) A.O. de-la Roza, E.R. Johnson, J. Chem. Phys. 136, 174109 (2012)
32.
go back to reference N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)CrossRef N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)CrossRef
33.
34.
go back to reference S. Günther, T.O. Mentes, M.A. Niño, A. Locatelli, W.J. Böcklein, Nat. Commun. 5, 3853 (2014) S. Günther, T.O. Mentes, M.A. Niño, A. Locatelli, W.J. Böcklein, Nat. Commun. 5, 3853 (2014)
35.
go back to reference T.E. Jones, T.C.R. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlogl, S. Piccinin, Phys. Chem. Chem. Phys. 17, 9288 (2015) T.E. Jones, T.C.R. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlogl, S. Piccinin, Phys. Chem. Chem. Phys. 17, 9288 (2015)
36.
go back to reference H.-W. Wassmuth, J. Ahner, M. Höfer, H. Stolz, Prog. Surf. Sci. 42, 257 (1993)CrossRef H.-W. Wassmuth, J. Ahner, M. Höfer, H. Stolz, Prog. Surf. Sci. 42, 257 (1993)CrossRef
38.
go back to reference A. Kokalj, A.D. Corso, S. de Gironcoli, S. Baroni, Surf. Sci. 532–535, 191 (2003)CrossRef A. Kokalj, A.D. Corso, S. de Gironcoli, S. Baroni, Surf. Sci. 532–535, 191 (2003)CrossRef
39.
Metadata
Title
Progress Report on: Sulfur in Ethylene Epoxidation on Silver (SEES2)
Author
Travis Jones
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13325-2_11

Premium Partner