Skip to main content
Top
Published in: Strength of Materials 3/2012

01-05-2012

Progressive failure analysis of glass/epoxy composites at low temperatures

Authors: M. M. Shokrieh, M. A. Torabizadeh, A. Fereidoon

Published in: Strength of Materials | Issue 3/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Because of applications of composites in space and in low temperature equipment, low temperature mechanical properties of glass fiber-reinforced epoxy have to be assessed. Experimental or analytical investigation on the tensile failure behavior of glass/epoxy laminated composite with/or without stress concentration subjected to thermo-mechanical static loadings at low temperatures has not been done yet. In the present work, a model was developed to perform the progressive failure analysis of quasi isotropic composite plates at low temperatures. The initial failure load is calculated by means of an elastic stress analysis. The load is increased step by step. For each given load, the stresses are evaluated and the appropriate failure criterion is applied to inspect for possible failure. For the failed element, material properties are modified according to the failure mode using a non-zero stiffness degradation factor. Then, the modified Newton–Raphson iteration is carried out until convergence is reached. This analysis is repeated for each load increment until the final failure occurs and the ultimate strength is determined. The present method yields results in a reasonable agreement with the experimental data at room temperature and −60°C. The effect of low temperature on the failure mechanism of the plates was also determined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. S. Schutz, “Properties of composite materials for cryogenic applications,” Cryogenics, 38, Issue 1, 3–12 (1998).CrossRef J. S. Schutz, “Properties of composite materials for cryogenic applications,” Cryogenics, 38, Issue 1, 3–12 (1998).CrossRef
2.
go back to reference D. E. Baynham, D. Evans, S. J. Gamage, et al., “Transverse mechanical properties of glass reinforced composite materials at 4 K,” Cryogenics, 38, Issue 1, 61–67 (1998).CrossRef D. E. Baynham, D. Evans, S. J. Gamage, et al., “Transverse mechanical properties of glass reinforced composite materials at 4 K,” Cryogenics, 38, Issue 1, 61–67 (1998).CrossRef
3.
go back to reference Y. Shindo, H. Tokairin, K. Sanada, et al., “Compression behavior of glass-cloth/epoxy laminates at cryogenic temperature,” Cryogenics, 39, Issue 10, 821–827 (1999).CrossRef Y. Shindo, H. Tokairin, K. Sanada, et al., “Compression behavior of glass-cloth/epoxy laminates at cryogenic temperature,” Cryogenics, 39, Issue 10, 821–827 (1999).CrossRef
4.
go back to reference X. F. Wang and J. H. Zhao, “Monte-Carlo simulation to the tensile mechanical behaviors of unidirectional composites at low temperatures,” Cryogenics, 41, Issue 9, 683–691 (2001).CrossRef X. F. Wang and J. H. Zhao, “Monte-Carlo simulation to the tensile mechanical behaviors of unidirectional composites at low temperatures,” Cryogenics, 41, Issue 9, 683–691 (2001).CrossRef
5.
go back to reference K. H. Ip, P. K. Dutta, and D. Hui, “Effects of low temperature on the dynamic moduli of thick composite beams with absorbed moisture,” Composites Part B: Engineering, 32, Issue 7, 599–607 (2001).CrossRef K. H. Ip, P. K. Dutta, and D. Hui, “Effects of low temperature on the dynamic moduli of thick composite beams with absorbed moisture,” Composites Part B: Engineering, 32, Issue 7, 599–607 (2001).CrossRef
6.
go back to reference S. Sánchez-Sáez, T. Gómez-del Rio, E. Barbero, et al., “Static behavior of CFRPs at low temperatures,” Composite Part B: Engineering, 33, Issue 5, 383–390 (2002).CrossRef S. Sánchez-Sáez, T. Gómez-del Rio, E. Barbero, et al., “Static behavior of CFRPs at low temperatures,” Composite Part B: Engineering, 33, Issue 5, 383–390 (2002).CrossRef
7.
go back to reference V. T. Bechel and R. Y. Kim, “Damage trends in cryogenically cycled carbon/polymer composites,” Compos. Sci. Technol., 64, Issue 12,1773–1784 (2004).CrossRef V. T. Bechel and R. Y. Kim, “Damage trends in cryogenically cycled carbon/polymer composites,” Compos. Sci. Technol., 64, Issue 12,1773–1784 (2004).CrossRef
8.
go back to reference R. Y. Kim and S. L. Donaldson, “Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperature,” Compos. Struct., 76, 62–66 (2006).CrossRef R. Y. Kim and S. L. Donaldson, “Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperature,” Compos. Struct., 76, 62–66 (2006).CrossRef
9.
go back to reference P. Ifju, D. Myers, and W. Schultz, “Residual stress and thermal expansion of graphite epoxy laminates subjected to cryogenic temperatures,” Compos. Sci. Technol., 66, 2449–2455 (2006).CrossRef P. Ifju, D. Myers, and W. Schultz, “Residual stress and thermal expansion of graphite epoxy laminates subjected to cryogenic temperatures,” Compos. Sci. Technol., 66, 2449–2455 (2006).CrossRef
10.
go back to reference P. Rupnowski, M. Gentz, and M. Kumosa, “Mechanical response of a unidirectional graphite fiber/polyimide composite as a function of temperature,” Compos. Sci. Technol., 66, 1045–1055 (2006).CrossRef P. Rupnowski, M. Gentz, and M. Kumosa, “Mechanical response of a unidirectional graphite fiber/polyimide composite as a function of temperature,” Compos. Sci. Technol., 66, 1045–1055 (2006).CrossRef
11.
go back to reference M. G. Kim, S. G. Kang, C. G. Kim, and C. W. Kong, “Tensile response of graphite/epoxy composite at low temperatures,” Compos. Struct., 79, No. 1, 84–89 (2007).CrossRef M. G. Kim, S. G. Kang, C. G. Kim, and C. W. Kong, “Tensile response of graphite/epoxy composite at low temperatures,” Compos. Struct., 79, No. 1, 84–89 (2007).CrossRef
12.
go back to reference T. Takeda, Y. Shindo, and F. Narita, “Three-dimensional thermoelastic analysis of cracked plain weave glass/epoxy composites at cryogenic temperatures,” Compos. Sci. Technol., 64, 2353–2362 (2004).CrossRef T. Takeda, Y. Shindo, and F. Narita, “Three-dimensional thermoelastic analysis of cracked plain weave glass/epoxy composites at cryogenic temperatures,” Compos. Sci. Technol., 64, 2353–2362 (2004).CrossRef
13.
go back to reference Y. Shindo, K. Horiguchi, R. Wang, and H. Kudo, “Double cantilever beam measurement and finite element analysis of cryogenic Mode I interlaminar fracture toughness of glass-cloth/epoxy laminates,” J. Eng. Mater. Technol., 123, 191–197 (2001).CrossRef Y. Shindo, K. Horiguchi, R. Wang, and H. Kudo, “Double cantilever beam measurement and finite element analysis of cryogenic Mode I interlaminar fracture toughness of glass-cloth/epoxy laminates,” J. Eng. Mater. Technol., 123, 191–197 (2001).CrossRef
14.
go back to reference R. J. Melcher and W. S. Johnson, “Mode I fracture toughness of an adhesively bonded composite-composite joint in a cryogenic environment,” Compos. Sci. Technol., 67, Issue 3-4, 501–506 (2007).CrossRef R. J. Melcher and W. S. Johnson, “Mode I fracture toughness of an adhesively bonded composite-composite joint in a cryogenic environment,” Compos. Sci. Technol., 67, Issue 3-4, 501–506 (2007).CrossRef
15.
go back to reference Y. Shindo, A. Inamoto, and F. Narita, “Characterization of Mode I fatigue crack growth in GFRP woven laminates at low temperatures,” Acta Mater., 53, 1389–1396 (2005).CrossRef Y. Shindo, A. Inamoto, and F. Narita, “Characterization of Mode I fatigue crack growth in GFRP woven laminates at low temperatures,” Acta Mater., 53, 1389–1396 (2005).CrossRef
16.
go back to reference Y. Shindo, A. Inamoto, F. Narita, and K. Horiguchi, “Mode I fatigue delamination growth in CFRP woven laminates at low temperatures,” Eng. Fract. Mech., 73, 2080–2090 (2006).CrossRef Y. Shindo, A. Inamoto, F. Narita, and K. Horiguchi, “Mode I fatigue delamination growth in CFRP woven laminates at low temperatures,” Eng. Fract. Mech., 73, 2080–2090 (2006).CrossRef
17.
go back to reference S. Kumagai, Y. Shindo, and A. Inamoto, “Tension-tension fatigue behavior of GFRP woven laminates at low temperatures,” Cryogenics, 45, Issue 2, 123– 128 (2005).CrossRef S. Kumagai, Y. Shindo, and A. Inamoto, “Tension-tension fatigue behavior of GFRP woven laminates at low temperatures,” Cryogenics, 45, Issue 2, 123– 128 (2005).CrossRef
18.
go back to reference Y. Shindo, S. Takano, K. Horiguchi, and T. Sato, “Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension-tension cycling,” Cryogenics, 46, Issue 11, 794–798 (2006).CrossRef Y. Shindo, S. Takano, K. Horiguchi, and T. Sato, “Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension-tension cycling,” Cryogenics, 46, Issue 11, 794–798 (2006).CrossRef
19.
go back to reference G. Labeas, S. Belesis, and D. Stamatelos, “Interaction of damage failure and post-buckling behavior of composite plates with cut-outs by progressive damage modeling,” Composites Part B: Engineering, 39, Issue 2, 304–315 (2008).CrossRef G. Labeas, S. Belesis, and D. Stamatelos, “Interaction of damage failure and post-buckling behavior of composite plates with cut-outs by progressive damage modeling,” Composites Part B: Engineering, 39, Issue 2, 304–315 (2008).CrossRef
20.
go back to reference X. Liu and G. Wang, “Progressive failure analysis of bonded composite repairs,” Compos. Struct., 81, 331–340 (2007).CrossRef X. Liu and G. Wang, “Progressive failure analysis of bonded composite repairs,” Compos. Struct., 81, 331–340 (2007).CrossRef
21.
go back to reference Q. Zhao, S. V. Hoa, and S. V. Ouellette, “Progressive failure of triaxial woven fabric (TWF) composites with open holes,” Compos. Struct., 65, 419–431 (2004).CrossRef Q. Zhao, S. V. Hoa, and S. V. Ouellette, “Progressive failure of triaxial woven fabric (TWF) composites with open holes,” Compos. Struct., 65, 419–431 (2004).CrossRef
22.
go back to reference B. M. Icten and R. Karakuzu, “Progressive failure analysis of pin-loaded carbon-epoxy woven composite plates,” Compos. Sci. Technol., 62, 1259–1271 (2002).CrossRef B. M. Icten and R. Karakuzu, “Progressive failure analysis of pin-loaded carbon-epoxy woven composite plates,” Compos. Sci. Technol., 62, 1259–1271 (2002).CrossRef
23.
go back to reference T. Takeda, S. Takano, Y. Shindo, and F. Nurita, “Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures,” Compos. Sci. Technol., 65, 1691–1702 (2005).CrossRef T. Takeda, S. Takano, Y. Shindo, and F. Nurita, “Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures,” Compos. Sci. Technol., 65, 1691–1702 (2005).CrossRef
24.
go back to reference Y. Shindo, S. Takano, F. Narita, and K. Horiguchi, “Tensile and damage behavior of plain weave glass/epoxy composites at cryogenic temperatures,” Fusion Eng. Design, 81, Issue 20-22, 2479–2483 (2006).CrossRef Y. Shindo, S. Takano, F. Narita, and K. Horiguchi, “Tensile and damage behavior of plain weave glass/epoxy composites at cryogenic temperatures,” Fusion Eng. Design, 81, Issue 20-22, 2479–2483 (2006).CrossRef
25.
go back to reference G. Akhras and W. C. Li, “Progressive failure analysis of thick composite plates using spline finite strip method,” Compos. Struct., 79, 34–43 (2007).CrossRef G. Akhras and W. C. Li, “Progressive failure analysis of thick composite plates using spline finite strip method,” Compos. Struct., 79, 34–43 (2007).CrossRef
26.
go back to reference M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon, “Progressive failure analysis of composite plates,” in: Proc. of 8th Iranian Aerospace Society Conference (Oct. 25–26, 2009, Esfahan). M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon, “Progressive failure analysis of composite plates,” in: Proc. of 8th Iranian Aerospace Society Conference (Oct. 25–26, 2009, Esfahan).
27.
go back to reference ANSYS, Ver. 10, ANSYS Inc., Canonsburg, PA (2005). ANSYS, Ver. 10, ANSYS Inc., Canonsburg, PA (2005).
28.
go back to reference M. M. Shokrieh, M. A. Torabizadeh,and A. Fereidoon, “An investigation on damage of quasi-isotropic laminated composite,” in: Proc. of 18th Annual International Conference on Mechanical Engineering, Tehran (2010). M. M. Shokrieh, M. A. Torabizadeh,and A. Fereidoon, “An investigation on damage of quasi-isotropic laminated composite,” in: Proc. of 18th Annual International Conference on Mechanical Engineering, Tehran (2010).
29.
go back to reference A. K. Kaw, Mechanics of Composite Materials, Taylor and Francis Group, LLC (2006). A. K. Kaw, Mechanics of Composite Materials, Taylor and Francis Group, LLC (2006).
30.
go back to reference M. M. Shokrieh, Progressive Fatigue Damage Modeling of Composite Materials, Ph.D. Thesis, McGill University (1996). M. M. Shokrieh, Progressive Fatigue Damage Modeling of Composite Materials, Ph.D. Thesis, McGill University (1996).
Metadata
Title
Progressive failure analysis of glass/epoxy composites at low temperatures
Authors
M. M. Shokrieh
M. A. Torabizadeh
A. Fereidoon
Publication date
01-05-2012
Publisher
Springer US
Published in
Strength of Materials / Issue 3/2012
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-012-9384-3

Other articles of this Issue 3/2012

Strength of Materials 3/2012 Go to the issue

Premium Partners