Skip to main content
Top

2017 | OriginalPaper | Chapter

Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme Under Weak Strong Convexity Assumption

Authors : Jie Liu, Martin Takáč

Published in: Modeling and Optimization: Theory and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a projected semi-stochastic gradient descent method with mini-batch for improving both the theoretical complexity and practical performance of the general stochastic gradient descent method (SGD). We are able to prove linear convergence under weak strong convexity assumption. This requires no strong convexity assumption for minimizing the sum of smooth convex functions subject to a compact polyhedral set, which remains popular across machine learning community. Our PS2GD preserves the low-cost per iteration and high optimization accuracy via stochastic gradient variance-reduced technique, and admits a simple parallel implementation with mini-batches. Moreover, PS2GD is also applicable to dual problem of SVM with hinge loss.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Even though the concept was first proposed by Liu and Wright in [15] as optimally strong convexity, to emphasize it as an extended version of strong convexity, we use the term weak strong convexity as in [6] throughout our paper.
 
2
It is possible to finish each iteration with only b evaluations for component gradients, namely \(\{\nabla f_{i}(y_{k,t})\}_{i\in A_{kt}}\), at the cost of having to store {∇f i (x k )} i ∈ [n], which is exactly the way that SAG [14] works. This speeds up the algorithm; nevertheless, it is impractical for big n.
 
3
We only need to prove the existence of β and do not need to evaluate its value in practice. Lemma 4 provides the existence of β.
 
6
In practice, it is impossible to ensure that evaluating different component gradients takes the same time; however, Fig. 2 implies the potential and advantage of applying mini-batch scheme with parallelism.
 
7
Note that this quantity is never computed during the algorithm. We can use it in the analysis nevertheless.
 
8
For simplicity, we omit the E[⋅ | y k, t ] notation in further analysis.
 
9
\(\bar{y}_{k,t+1}\) is constant, conditioned on y k, t .
 
Literature
1.
go back to reference Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)CrossRefMathSciNetMATH Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)CrossRefMathSciNetMATH
2.
3.
go back to reference Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. In: NIPS (2014) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. In: NIPS (2014)
4.
go back to reference Fercoq, O., Richtárik, P.: Accelerated, parallel and proximal coordinate descent. arXiv:1312.5799 (2013) Fercoq, O., Richtárik, P.: Accelerated, parallel and proximal coordinate descent. arXiv:1312.5799 (2013)
5.
go back to reference Fercoq, O., Qu, Z., Richtárik, P., Takáč, M.: Fast distributed coordinate descent for non-strongly convex losses. In: IEEE Workshop on Machine Learning for Signal Processing (2014)CrossRef Fercoq, O., Qu, Z., Richtárik, P., Takáč, M.: Fast distributed coordinate descent for non-strongly convex losses. In: IEEE Workshop on Machine Learning for Signal Processing (2014)CrossRef
6.
go back to reference Gong, P., Ye, J.: Linear convergence of variance-reduced projected stochastic gradient without strong convexity. arXiv:1406.1102 (2014) Gong, P., Ye, J.: Linear convergence of variance-reduced projected stochastic gradient without strong convexity. arXiv:1406.1102 (2014)
7.
go back to reference Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49(4), 263–265 (1952)CrossRefMathSciNet Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49(4), 263–265 (1952)CrossRefMathSciNet
8.
go back to reference Jaggi, M., Smith, V., Takáč, M., Terhorst, J., Hofmann, T., Jordan, M.I.: Communication-efficient distributed dual coordinate ascent. In: NIPS, pp. 3068–3076 (2014) Jaggi, M., Smith, V., Takáč, M., Terhorst, J., Hofmann, T., Jordan, M.I.: Communication-efficient distributed dual coordinate ascent. In: NIPS, pp. 3068–3076 (2014)
9.
go back to reference Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: NIPS, pp. 315–323 (2013) Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: NIPS, pp. 315–323 (2013)
10.
go back to reference Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In: ECML PKDD, pp. 795–811 (2016) Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In: ECML PKDD, pp. 795–811 (2016)
11.
go back to reference Kloft, M., Brefeld, U., Laskov, P., Müller, K.-R., Zien, A., Sonnenburg, S.: Efficient and accurate lp-norm multiple kernel learning. In: NIPS, pp. 997–1005 (2009) Kloft, M., Brefeld, U., Laskov, P., Müller, K.-R., Zien, A., Sonnenburg, S.: Efficient and accurate lp-norm multiple kernel learning. In: NIPS, pp. 997–1005 (2009)
12.
go back to reference Konečný, J., Liu, J., Richtárik, P., Takáč, M.: Mini-batch semi-stochastic gradient descent in the proximal setting. IEEE J. Sel. Top. Sign. Proces. 10, 242–255 (2016)CrossRef Konečný, J., Liu, J., Richtárik, P., Takáč, M.: Mini-batch semi-stochastic gradient descent in the proximal setting. IEEE J. Sel. Top. Sign. Proces. 10, 242–255 (2016)CrossRef
13.
go back to reference Konečný, J., Richtárik, P.: Semi-stochastic gradient descent methods. arXiv:1312.1666 (2013) Konečný, J., Richtárik, P.: Semi-stochastic gradient descent methods. arXiv:1312.1666 (2013)
14.
go back to reference Le Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an exponential convergence rate for finite training sets. In: NIPS, pp. 2672–2680 (2012) Le Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an exponential convergence rate for finite training sets. In: NIPS, pp. 2672–2680 (2012)
15.
go back to reference Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: parallelism and convergence properties. SIAM J. Optim. 25(1), 351–376 (2015)CrossRefMathSciNetMATH Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: parallelism and convergence properties. SIAM J. Optim. 25(1), 351–376 (2015)CrossRefMathSciNetMATH
16.
go back to reference Mareček, J., Richtárik, P., Takáč, M.: Distributed block coordinate descent for minimizing partially separable functions. In: Numerical Analysis and Optimization 2014, Springer Proceedings in Mathematics and Statistics, pp. 261–286 (2014) Mareček, J., Richtárik, P., Takáč, M.: Distributed block coordinate descent for minimizing partially separable functions. In: Numerical Analysis and Optimization 2014, Springer Proceedings in Mathematics and Statistics, pp. 261–286 (2014)
17.
go back to reference Necoara, I., Clipici, D.: Parallel random coordinate descent method for composite minimization: convergence analysis and error bounds. SIAM J. Optim. 26(1), 197–226 (2016)CrossRefMathSciNetMATH Necoara, I., Clipici, D.: Parallel random coordinate descent method for composite minimization: convergence analysis and error bounds. SIAM J. Optim. 26(1), 197–226 (2016)CrossRefMathSciNetMATH
18.
go back to reference Necoara, I., Patrascu, A.: A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints. Comput. Optim. Appl. 57(2), 307–337 (2014)CrossRefMathSciNetMATH Necoara, I., Patrascu, A.: A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints. Comput. Optim. Appl. 57(2), 307–337 (2014)CrossRefMathSciNetMATH
19.
go back to reference Necoara, I., Nesterov, Y., Glineur, F.: Linear convergence of first order methods for non-strongly convex optimization. arXiv:1504.06298 (2015) Necoara, I., Nesterov, Y., Glineur, F.: Linear convergence of first order methods for non-strongly convex optimization. arXiv:1504.06298 (2015)
20.
go back to reference Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)CrossRefMathSciNetMATH Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)CrossRefMathSciNetMATH
21.
go back to reference Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston (2004)CrossRefMATH Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston (2004)CrossRefMATH
22.
24.
go back to reference Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: a novel method for machine learning problems using stochastic recursive gradient. arXiv:1703.00102 (2017) Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: a novel method for machine learning problems using stochastic recursive gradient. arXiv:1703.00102 (2017)
25.
go back to reference Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)CrossRefMathSciNetMATH Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)CrossRefMathSciNetMATH
26.
go back to reference Richtárik, P., Takáč, M.: Distributed coordinate descent method for learning with big data. J. Mach. Learn. Res. 17, 1–25 (2016)MathSciNetMATH Richtárik, P., Takáč, M.: Distributed coordinate descent method for learning with big data. J. Mach. Learn. Res. 17, 1–25 (2016)MathSciNetMATH
27.
go back to reference Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Program. Ser. A 156, 1–52 (2016)CrossRefMathSciNetMATH Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Program. Ser. A 156, 1–52 (2016)CrossRefMathSciNetMATH
28.
go back to reference Shalev-Shwartz, S., Zhang, T.: Accelerated mini-batch stochastic dual coordinate ascent. In: NIPS, pp. 378–385 (2013) Shalev-Shwartz, S., Zhang, T.: Accelerated mini-batch stochastic dual coordinate ascent. In: NIPS, pp. 378–385 (2013)
29.
go back to reference Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss. J. Mach. Learn. Res. 14(1), 567–599 (2013)MathSciNetMATH Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss. J. Mach. Learn. Res. 14(1), 567–599 (2013)MathSciNetMATH
30.
go back to reference Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. Ser. A, B Spec. Issue Optim. Mach. Learn. 127, 3–30 (2011)CrossRefMathSciNetMATH Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. Ser. A, B Spec. Issue Optim. Mach. Learn. 127, 3–30 (2011)CrossRefMathSciNetMATH
31.
go back to reference Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth optimization: convergence results and optimal averaging schemes. In: ICML, pp. 71–79. Springer, New York (2013) Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth optimization: convergence results and optimal averaging schemes. In: ICML, pp. 71–79. Springer, New York (2013)
32.
go back to reference Takáč, M., Bijral, A.S., Richtárik, P., Srebro, N.: Mini-batch primal and dual methods for SVMs. In: ICML, pp. 537–552. Springer (2013) Takáč, M., Bijral, A.S., Richtárik, P., Srebro, N.: Mini-batch primal and dual methods for SVMs. In: ICML, pp. 537–552. Springer (2013)
33.
go back to reference Wang, P.-W., Lin, C.-J.: Iteration complexity of feasible descent methods for convex optimization. J. Mach. Learn. Res. 15, 1523–1548 (2014)MathSciNetMATH Wang, P.-W., Lin, C.-J.: Iteration complexity of feasible descent methods for convex optimization. J. Mach. Learn. Res. 15, 1523–1548 (2014)MathSciNetMATH
34.
go back to reference Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim. 24(4), 2057–2075 (2014)CrossRefMathSciNetMATH Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim. 24(4), 2057–2075 (2014)CrossRefMathSciNetMATH
35.
go back to reference Zhang, T.: Solving large scale linear prediction using stochastic gradient descent algorithms. In: ICML, pp. 919–926. Springer (2004) Zhang, T.: Solving large scale linear prediction using stochastic gradient descent algorithms. In: ICML, pp. 919–926. Springer (2004)
36.
go back to reference Zhang, H.: The restricted strong convexity revisited: analysis of equivalence to error bound and quadratic growth. Optim. Lett. 11(4), 817–833 (2016)CrossRefMathSciNetMATH Zhang, H.: The restricted strong convexity revisited: analysis of equivalence to error bound and quadratic growth. Optim. Lett. 11(4), 817–833 (2016)CrossRefMathSciNetMATH
37.
go back to reference Zhang, L., Mahdavi, M., Jin, R.: Linear convergence with condition number independent access of full gradients. In: NIPS, pp. 980–988 (2013) Zhang, L., Mahdavi, M., Jin, R.: Linear convergence with condition number independent access of full gradients. In: NIPS, pp. 980–988 (2013)
Metadata
Title
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme Under Weak Strong Convexity Assumption
Authors
Jie Liu
Martin Takáč
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-66616-7_7