Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Pros and Cons on Magnetic Nanoparticles Use in Biomedicine and Biotechnologies Applications

Authors : Florina M. Bojin, Virgil Paunescu

Published in: Nanoparticles' Promises and Risks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the design and synthesis of colloidal magnetic suspensions have attracted an increased interest especially in the fields of biotechnology and biomedicine because they have many applications including targeted drug delivery, cell labeling and magnetic cell separation, hyperthermia, tissue repairing, magnetic resonance imaging (MRI) contrast enhancement, enzyme immobilization, immunoassays, protein purification, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Leslie Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783 Leslie Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783
2.
go back to reference Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, New-York Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, New-York
3.
go back to reference Hadjipanayis GC, Prinz GA (1991) Science and technology of nanostructured magnetic materials. Plenum Press, New-York Hadjipanayis GC, Prinz GA (1991) Science and technology of nanostructured magnetic materials. Plenum Press, New-York
4.
go back to reference Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459 Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459
5.
go back to reference Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501 Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501
6.
go back to reference Jun YW, Choi JS, Cheon J (2007) Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun 12:1203–1214 Jun YW, Choi JS, Cheon J (2007) Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun 12:1203–1214
7.
go back to reference Tebble RS, Craik DJ (1969) Magnetic materials. Wiley-Interscience, London Tebble RS, Craik DJ (1969) Magnetic materials. Wiley-Interscience, London
8.
go back to reference West AR (1988) Basic solid state chemistry. Wiley, New York West AR (1988) Basic solid state chemistry. Wiley, New York
9.
go back to reference O’Handley RC (2000) Modern magnetic materials—principles and applications. Wiley, New York O’Handley RC (2000) Modern magnetic materials—principles and applications. Wiley, New York
10.
go back to reference Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. VCH, Weinheim, Germany Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. VCH, Weinheim, Germany
11.
go back to reference Cornell RM, Schwertmann U (1991) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Verlag GmbH, Weinheim Cornell RM, Schwertmann U (1991) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Verlag GmbH, Weinheim
12.
go back to reference Jiles D (1998) Introduction to magnetism and magnetic materials, 2nd edn. Chapman & Hall, New York Jiles D (1998) Introduction to magnetism and magnetic materials, 2nd edn. Chapman & Hall, New York
13.
go back to reference Frankel RB, Moskowitz BM (2003) In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV: nanosized magnetic materials. Wiley-VCH Verlag GmbH, Weinheim Frankel RB, Moskowitz BM (2003) In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV: nanosized magnetic materials. Wiley-VCH Verlag GmbH, Weinheim
14.
go back to reference Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149(1–2):6–9 Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149(1–2):6–9
15.
go back to reference Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater 8(9):2209–2211 Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater 8(9):2209–2211
16.
go back to reference Lee JW, Isobe T, Senna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf A Physicochem Eng Asp 109:121–127 Lee JW, Isobe T, Senna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf A Physicochem Eng Asp 109:121–127
17.
go back to reference Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36 Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36
18.
go back to reference Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487 Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487
19.
go back to reference Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16(18):3489–3496 Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16(18):3489–3496
20.
go back to reference Tartaj P, Morales MP, Gonzalez-Carreno T, Veintemillas-Verdaguer S, Serna CJ (2005) Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 290:28–34 Tartaj P, Morales MP, Gonzalez-Carreno T, Veintemillas-Verdaguer S, Serna CJ (2005) Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 290:28–34
21.
go back to reference Wu W, He Q, Hu R, Huang J, Chen H (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mat Eng 36(3):238–243 Wu W, He Q, Hu R, Huang J, Chen H (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mat Eng 36(3):238–243
22.
go back to reference Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108(6):2064–2110 Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108(6):2064–2110
23.
go back to reference Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121(49):11595–11596 Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121(49):11595–11596
24.
go back to reference Hyeon T, Lee SS, Park J, Chung Y, Bin NH (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801 Hyeon T, Lee SS, Park J, Chung Y, Bin NH (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801
25.
go back to reference Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205 Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205
26.
go back to reference Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934 Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934
27.
go back to reference Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279 Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279
28.
go back to reference Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818 Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818
29.
go back to reference Răileanu M, Crişan M, Petrache C, Crişan D, Zaharescu M (2003) Fe2O3-SiO2 nanocomposites obtained by different sol-gel routes. J Optoelectron Adv Mater 5(3):693–698 Răileanu M, Crişan M, Petrache C, Crişan D, Zaharescu M (2003) Fe2O3-SiO2 nanocomposites obtained by different sol-gel routes. J Optoelectron Adv Mater 5(3):693–698
30.
go back to reference Ismail AA (2005) Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl Catal B Environ 58(1–2):115–121 Ismail AA (2005) Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl Catal B Environ 58(1–2):115–121
31.
go back to reference Durães L, Costa BFO, Vasques J, Campos J, Portugal A (2005) Phase investigation of as-prepared iron oxide/hydroxide produced by sol-gel synthesis. Mater Lett 59(7):859–863 Durães L, Costa BFO, Vasques J, Campos J, Portugal A (2005) Phase investigation of as-prepared iron oxide/hydroxide produced by sol-gel synthesis. Mater Lett 59(7):859–863
32.
go back to reference Dai ZF, Meiser F, Mohwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process. J Colloid Interface Sci 288(1):298–300 Dai ZF, Meiser F, Mohwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process. J Colloid Interface Sci 288(1):298–300
33.
go back to reference Hirai T, Mizumoto JY, Shiojiri S, Komasawa I (1997) Preparation of Fe oxide and composite Ti-Fe oxide ultrafine particles in reverse micellar systems. J Chem Eng Jpn 30(5):938–943 Hirai T, Mizumoto JY, Shiojiri S, Komasawa I (1997) Preparation of Fe oxide and composite Ti-Fe oxide ultrafine particles in reverse micellar systems. J Chem Eng Jpn 30(5):938–943
34.
go back to reference Liu C, Zou BS, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104(6):1141–1145 Liu C, Zou BS, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104(6):1141–1145
35.
go back to reference Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906 Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906
36.
go back to reference Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321 Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321
37.
go back to reference Bi XX, Ganguly B, Huffman GP, Huggins FE, Endo M, Eklund PC (1993) Nanocrystalline α-Fe, Fe3C, and Fe7C3 produced by CO2-laser pyrolysis. J Mater Res 8(7):1666–1674 Bi XX, Ganguly B, Huffman GP, Huggins FE, Endo M, Eklund PC (1993) Nanocrystalline α-Fe, Fe3C, and Fe7C3 produced by CO2-laser pyrolysis. J Mater Res 8(7):1666–1674
38.
go back to reference Hofmeister H, Huisken F, Kohn B, Alexandrescu R, Cojocaru S, Crunteanu A, Morjan I, Diamandescu L (2001) Filamentary iron nanostructures from laser-induced pyrolysis of iron pentacarbonyl and ethylene mixtures. Appl Phys Mater Sci Process 72(1):7–11 Hofmeister H, Huisken F, Kohn B, Alexandrescu R, Cojocaru S, Crunteanu A, Morjan I, Diamandescu L (2001) Filamentary iron nanostructures from laser-induced pyrolysis of iron pentacarbonyl and ethylene mixtures. Appl Phys Mater Sci Process 72(1):7–11
39.
go back to reference He YQ, Li XG, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater 17(5):1017–1026 He YQ, Li XG, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater 17(5):1017–1026
40.
go back to reference Leconte Y, Veintemillas-Verdaguer S, Morales MP, Costo R, Rodriguez I, Bonville P, Bouchet-Fabre B, Herlin-Boime N (2007) Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis: application as MRI contrasts. J Colloid Interface Sci 313(2):511–518 Leconte Y, Veintemillas-Verdaguer S, Morales MP, Costo R, Rodriguez I, Bonville P, Bouchet-Fabre B, Herlin-Boime N (2007) Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis: application as MRI contrasts. J Colloid Interface Sci 313(2):511–518
41.
go back to reference Varma A, Lebrat JP (1992) Combustion synthesis of advanced materials. Chem Eng Sci 47(9–11):2179–2194 Varma A, Lebrat JP (1992) Combustion synthesis of advanced materials. Chem Eng Sci 47(9–11):2179–2194
42.
go back to reference Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opin Solid State Mater Sci 2:158–165 Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opin Solid State Mater Sci 2:158–165
43.
go back to reference Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31(2):1789–1795 Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31(2):1789–1795
44.
go back to reference Patil KC, Hegdeg MS, Ratan T, Aruna ST (2008) Chemistry of nanocrystalline oxide materials. Combustion synthesis. Properties and applications. World Scientific, Singapore Patil KC, Hegdeg MS, Ratan T, Aruna ST (2008) Chemistry of nanocrystalline oxide materials. Combustion synthesis. Properties and applications. World Scientific, Singapore
45.
go back to reference Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12(3–4):44–50 Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12(3–4):44–50
46.
go back to reference Ianoş R (2009) An efficient solution for the single step synthesis of 4CaO·Al2O3·Fe2O3 powders. J Mater Res 24(1):245–252 Ianoş R (2009) An efficient solution for the single step synthesis of 4CaO·Al2O3·Fe2O3 powders. J Mater Res 24(1):245–252
47.
go back to reference Murakami S, Hosono T, Jezadevan B, Kamitakahara M, Iouku K (2008) Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J Ceram Soc Jpn 116:950–954 Murakami S, Hosono T, Jezadevan B, Kamitakahara M, Iouku K (2008) Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J Ceram Soc Jpn 116:950–954
48.
go back to reference Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of alpha-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285(1–2):296–302 Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of alpha-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285(1–2):296–302
49.
go back to reference Mao B, Kang Z, Wang E, Lian S, Gao L, Tian C, Wang C (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231 Mao B, Kang Z, Wang E, Lian S, Gao L, Tian C, Wang C (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231
50.
go back to reference Liu X, Qiu G, Yan A, Wang Z, Li X (2007) Hydrothermal synthesis and characterization of alpha-FeOOH and alpha-Fe2O3 uniform nanocrystallines. J Alloys Compd 433(1–2):216–220 Liu X, Qiu G, Yan A, Wang Z, Li X (2007) Hydrothermal synthesis and characterization of alpha-FeOOH and alpha-Fe2O3 uniform nanocrystallines. J Alloys Compd 433(1–2):216–220
51.
go back to reference Zhu H, Yang D, Zhu L (2007) Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf Coating Tech 201(12):5870–5874 Zhu H, Yang D, Zhu L (2007) Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf Coating Tech 201(12):5870–5874
52.
go back to reference Yang X, Jiang W, Liu L, Chen B, Wu S, Sun D, Li F (2012) One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles. J Magn Magn Mater 324:2249–2257 Yang X, Jiang W, Liu L, Chen B, Wu S, Sun D, Li F (2012) One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles. J Magn Magn Mater 324:2249–2257
53.
go back to reference Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330 Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330
54.
go back to reference Bang JH, Suslick KS (2007) Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc 129(8):2242–2243 Bang JH, Suslick KS (2007) Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc 129(8):2242–2243
55.
go back to reference Teo BM, Chen F, Hatton AT, Grieser F, Ashokkumar M (2009) Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation. Langmuir 25(5):2593–2595 Teo BM, Chen F, Hatton AT, Grieser F, Ashokkumar M (2009) Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation. Langmuir 25(5):2593–2595
56.
go back to reference Feng J, Mao J, Wen XG, Tu MJ (2011) Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Alloys Compd 509:9093–9097 Feng J, Mao J, Wen XG, Tu MJ (2011) Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Alloys Compd 509:9093–9097
57.
go back to reference Khalafalla SE, Reimers GW (1973) Magnetofluids and their manufacture, US Patent 3764540 Khalafalla SE, Reimers GW (1973) Magnetofluids and their manufacture, US Patent 3764540
58.
go back to reference Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14–30 Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14–30
59.
go back to reference Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physicochemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85(1–3):7–10 Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physicochemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85(1–3):7–10
60.
go back to reference Sugimoto T (2003) Formation of monodispersed nano- and micro-particles controlled in size, shape, and internal structure. Chem Eng Tech 26(3):313–321 Sugimoto T (2003) Formation of monodispersed nano- and micro-particles controlled in size, shape, and internal structure. Chem Eng Tech 26(3):313–321
61.
go back to reference Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation. Chem Eng Comm 191(4):580–606 Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation. Chem Eng Comm 191(4):580–606
62.
go back to reference Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline alpha-Fe2O3 by a sol-gel process. Sensor Actuator B Chem 40(2–3):161–165 Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline alpha-Fe2O3 by a sol-gel process. Sensor Actuator B Chem 40(2–3):161–165
63.
go back to reference Kojima K, Miyazaki M, Mizukami F, Maeda K (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1–3):77–81 Kojima K, Miyazaki M, Mizukami F, Maeda K (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1–3):77–81
64.
go back to reference Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. J Magn Magn Mater 289:439–441 Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. J Magn Magn Mater 289:439–441
65.
go back to reference Răileanu M, Crişan M, Petrache C, Crişan D, Jitianu A, Zaharescu M, Predoi D, Kuncser V, Filoti G (2005) Sol-Gel FexOy-SiO2 nanocomposites. Rom J Phy 50(5–6):595–606 Răileanu M, Crişan M, Petrache C, Crişan D, Jitianu A, Zaharescu M, Predoi D, Kuncser V, Filoti G (2005) Sol-Gel FexOy-SiO2 nanocomposites. Rom J Phy 50(5–6):595–606
66.
go back to reference Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK, Shah DO (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst 18(1):77–140 Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK, Shah DO (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst 18(1):77–140
67.
go back to reference Vidal-Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(1–3):44–51 Vidal-Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(1–3):44–51
68.
go back to reference Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1–3):235–237 Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1–3):235–237
69.
go back to reference Haggerty JS (1981) Controlling powder size with collimated light beam—which selectively vaporises larger particles. US Patent Number US4289952-A Haggerty JS (1981) Controlling powder size with collimated light beam—which selectively vaporises larger particles. US Patent Number US4289952-A
70.
go back to reference Morjan I, Alexandrescu R, Dumitrache F, Birjega R, Fleacă C, Soare I et al (2010) Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. J Nanosci Nanotechnol 10(2):1223–1234 Morjan I, Alexandrescu R, Dumitrache F, Birjega R, Fleacă C, Soare I et al (2010) Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. J Nanosci Nanotechnol 10(2):1223–1234
71.
go back to reference McKittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays 19(4):169–172 McKittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays 19(4):169–172
72.
go back to reference Garcia R, Hirata GA, McKittrick J (2001) New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: hydrazine/metal nitrate method. J Mater Res 16(4):1059–1065 Garcia R, Hirata GA, McKittrick J (2001) New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: hydrazine/metal nitrate method. J Mater Res 16(4):1059–1065
73.
go back to reference Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A (2001) Perovskite membranes by aqueous combustion synthesis: synthesis and properties. Sep Purif Technol 25(1–3):117–126 Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A (2001) Perovskite membranes by aqueous combustion synthesis: synthesis and properties. Sep Purif Technol 25(1–3):117–126
74.
go back to reference Luo XX, Cao WH, Xing MM (2006) Preparation of nano Y2O2S:Eu phosphor by ethanol assisted combustion synthesis method. J Rare Earths 24(1):20–24 Luo XX, Cao WH, Xing MM (2006) Preparation of nano Y2O2S:Eu phosphor by ethanol assisted combustion synthesis method. J Rare Earths 24(1):20–24
75.
go back to reference Li F, Hu K, Li JL, Zhang D, Chen G (2002) Combustion synthesis of gamma-lithium aluminate by using various fuels. J Nucl Mater 300(1):82–88 Li F, Hu K, Li JL, Zhang D, Chen G (2002) Combustion synthesis of gamma-lithium aluminate by using various fuels. J Nucl Mater 300(1):82–88
76.
go back to reference Jung CH, Park JY, Oh SJ, Park HK, Kim YS, Kim DK, Kim JH (1998) Synthesis of Li2TiO3 ceramic breeder powders by the combustion process. J Nucl Mater 253:203–212 Jung CH, Park JY, Oh SJ, Park HK, Kim YS, Kim DK, Kim JH (1998) Synthesis of Li2TiO3 ceramic breeder powders by the combustion process. J Nucl Mater 253:203–212
77.
go back to reference Ozuna O, Hirata GA, McKittrick J (2004) Pressure influenced combustion synthesis of gamma- and alpha-Al2O3 nanocrystalline powders. J Phys Condens Matter 16(15):2585–2591 Ozuna O, Hirata GA, McKittrick J (2004) Pressure influenced combustion synthesis of gamma- and alpha-Al2O3 nanocrystalline powders. J Phys Condens Matter 16(15):2585–2591
78.
go back to reference Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021 Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021
79.
go back to reference Zheng YH, Cheng Y, Bao F, Wang YS (2006) Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater Res Bull 41(3):525–529 Zheng YH, Cheng Y, Bao F, Wang YS (2006) Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater Res Bull 41(3):525–529
80.
go back to reference Wang J, Sun JJ, Sun Q, Chen QW (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118 Wang J, Sun JJ, Sun Q, Chen QW (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118
81.
go back to reference Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18(18):4399–4404 Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18(18):4399–4404
82.
go back to reference Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 286(1):101–105 Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 286(1):101–105
83.
go back to reference Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J (2008) Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason Sonochem 15(3):257–264 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J (2008) Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason Sonochem 15(3):257–264
84.
go back to reference Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25):7907–7911 Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25):7907–7911
85.
go back to reference Vékás L, Bica D, Marinică O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58(3):257–267 Vékás L, Bica D, Marinică O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58(3):257–267
86.
go back to reference Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347:1–7 Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347:1–7
87.
go back to reference Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476 Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476
88.
go back to reference Euliss LE, Grancharov SG, O’Brien S, Deming TJ, Stucky GD, Murray CB, Held GA (2003) Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett 3(11):1489–1493 Euliss LE, Grancharov SG, O’Brien S, Deming TJ, Stucky GD, Murray CB, Held GA (2003) Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett 3(11):1489–1493
89.
go back to reference Liu XQ, Guan YP, Ma ZY, Liu ZH (2004) Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 20(23):10278–10282 Liu XQ, Guan YP, Ma ZY, Liu ZH (2004) Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 20(23):10278–10282
90.
go back to reference Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17(18):4617–4621 Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17(18):4617–4621
91.
go back to reference Alsmadi NA, Wadajkar AS, Cui W, Nguyen KT (2011) Effects of surfactants on properties of polymer-coated magnetic nanoparticles for drug delivery application. J Nanopart Res 13(12):7177–7186 Alsmadi NA, Wadajkar AS, Cui W, Nguyen KT (2011) Effects of surfactants on properties of polymer-coated magnetic nanoparticles for drug delivery application. J Nanopart Res 13(12):7177–7186
92.
go back to reference de Almeida MPS, Caiado KL, Sartoratto PPC, Cintra e Silva DO, Rereira AR, Morais PC (2010) Preparation and size-modulation of silica-coated maghemite nanoparticles. J Alloy Comp 500:149–152 de Almeida MPS, Caiado KL, Sartoratto PPC, Cintra e Silva DO, Rereira AR, Morais PC (2010) Preparation and size-modulation of silica-coated maghemite nanoparticles. J Alloy Comp 500:149–152
93.
go back to reference Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaria J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23(15):155603 Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaria J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23(15):155603
94.
go back to reference Singh RK, Kim TH, Patel KD, Knowles JC, Kim HW (2012) Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A 100(7):1734–1742 Singh RK, Kim TH, Patel KD, Knowles JC, Kim HW (2012) Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A 100(7):1734–1742
95.
go back to reference Lu AH, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Ed 43:4303–4306 Lu AH, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Ed 43:4303–4306
96.
go back to reference Luo N, Liu KX, Liu ZY, Li XJ, Chen SY, Shen Y, Chen TW (2012) Controllable synthesis of carbon coated iron-based composite nanoparticles. Nanotechnology 23(47):475603 Luo N, Liu KX, Liu ZY, Li XJ, Chen SY, Shen Y, Chen TW (2012) Controllable synthesis of carbon coated iron-based composite nanoparticles. Nanotechnology 23(47):475603
97.
go back to reference Lin J, Zhou WL, Kumbhar A, Wiemann J, Fang JY, Carpenter EE, O'Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31 Lin J, Zhou WL, Kumbhar A, Wiemann J, Fang JY, Carpenter EE, O'Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31
98.
go back to reference Mohammad F, Balaji G, Weber A, Uppu RM, Kumar CSSR (2010) Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. J Phys Chem C 114(45):19194–19201 Mohammad F, Balaji G, Weber A, Uppu RM, Kumar CSSR (2010) Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. J Phys Chem C 114(45):19194–19201
99.
go back to reference Sobal NS, Hilgendorff M, Mohwald H, Giersig M, Spasova M, Radetic T, Farle M (2002) Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett 2(6):621–624 Sobal NS, Hilgendorff M, Mohwald H, Giersig M, Spasova M, Radetic T, Farle M (2002) Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett 2(6):621–624
100.
go back to reference Vékás L (2013) Magnetic nanofluids. Synthesis, stabilization, properties, applications. Romanian Academy Publ. House, Bucharest Vékás L (2013) Magnetic nanofluids. Synthesis, stabilization, properties, applications. Romanian Academy Publ. House, Bucharest
101.
go back to reference Bica D (1995) Preparation of magnetic fluids for various applications. Rom Rep Phys 47(3–5):265–272 Bica D (1995) Preparation of magnetic fluids for various applications. Rom Rep Phys 47(3–5):265–272
102.
go back to reference Bica D, Vékás L, Avdeev MV, Marinică O, Socoliuc V, Bălăşoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311:17–21 Bica D, Vékás L, Avdeev MV, Marinică O, Socoliuc V, Bălăşoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311:17–21
103.
go back to reference Willis AL, Turro NJ, O’Brien S (2005) Spectroscopic characterization of the surface of iron oxide nanocrystals. Chem Mater 17(24):5970–5975 Willis AL, Turro NJ, O’Brien S (2005) Spectroscopic characterization of the surface of iron oxide nanocrystals. Chem Mater 17(24):5970–5975
104.
go back to reference Fauconnier N, Bee A, Roger J, Pons JN (1996) Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Progr Colloid Polymer Sci 100:212–216 Fauconnier N, Bee A, Roger J, Pons JN (1996) Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Progr Colloid Polymer Sci 100:212–216
105.
go back to reference Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318 Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318
106.
go back to reference Kumagai M, Imai Y, Nakamura T, Yamasaki Y, Sekino M, Ueno S, Hanaoka K, Kikuchi K, Nagano T, Kaneko E, Shimokado K, Kataoka K (2007) Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf B Biointerfaces 56(1–2):174–181 Kumagai M, Imai Y, Nakamura T, Yamasaki Y, Sekino M, Ueno S, Hanaoka K, Kikuchi K, Nagano T, Kaneko E, Shimokado K, Kataoka K (2007) Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf B Biointerfaces 56(1–2):174–181
107.
go back to reference Koneracka M, Muckova M, Zavisova V, Tomasovicova N, Kopcansky P, Timko M, Jurikova A, Csach K, Kavecansky V, Lancz G (2008) Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres. J Phys Condens Matter 20(20):204151 Koneracka M, Muckova M, Zavisova V, Tomasovicova N, Kopcansky P, Timko M, Jurikova A, Csach K, Kavecansky V, Lancz G (2008) Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres. J Phys Condens Matter 20(20):204151
108.
go back to reference Moeser GD, Green WH, Laibinis PE, Linse P, Hatton TA (2004) Structure of polymer-stabilized magnetic fluids: small-angle neutron scattering and mean-field lattice modeling. Langmuir 20(13):5223–5234 Moeser GD, Green WH, Laibinis PE, Linse P, Hatton TA (2004) Structure of polymer-stabilized magnetic fluids: small-angle neutron scattering and mean-field lattice modeling. Langmuir 20(13):5223–5234
109.
go back to reference Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160 Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160
110.
go back to reference Alcala MD, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ion 177(9–10):955–960 Alcala MD, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ion 177(9–10):955–960
111.
go back to reference Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69 Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69
112.
go back to reference van Blaaderen A, Kentgens APM (1992) Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes. J Non Cryst Solids 149(3):161–178 van Blaaderen A, Kentgens APM (1992) Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes. J Non Cryst Solids 149(3):161–178
113.
go back to reference Wang H, Nakamura H, Yao K, Maeda H, Abe E (2001) Effect of solvents on the preparation of silica-coated magnetic particles. Chem Lett 11:1168–1169 Wang H, Nakamura H, Yao K, Maeda H, Abe E (2001) Effect of solvents on the preparation of silica-coated magnetic particles. Chem Lett 11:1168–1169
114.
go back to reference Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17(12):3181–3186 Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17(12):3181–3186
115.
go back to reference Wang LY, Luo J, Maye MM, Fan Q, Qiang RD, Engelhard MH, Wang CM, Lin YH, Zhong CJ (2005) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15(18):1821–1832 Wang LY, Luo J, Maye MM, Fan Q, Qiang RD, Engelhard MH, Wang CM, Lin YH, Zhong CJ (2005) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15(18):1821–1832
116.
go back to reference Căruntu D, Cushing BL, Căruntu G, O’Connor CJ (2005) Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem Mater 17(13):3398–3402 Căruntu D, Cushing BL, Căruntu G, O’Connor CJ (2005) Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem Mater 17(13):3398–3402
117.
go back to reference Chan HBS, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC (2004) Carbon-encapsulated radioactive Tc-99m nanoparticles. Adv Mater 16(2):144–149 Chan HBS, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC (2004) Carbon-encapsulated radioactive Tc-99m nanoparticles. Adv Mater 16(2):144–149
118.
go back to reference Rosensweig RE (1989) Magnetic fluids: phenomena and process applications. Chem Eng Progr 85(4):53–61 Rosensweig RE (1989) Magnetic fluids: phenomena and process applications. Chem Eng Progr 85(4):53–61
119.
go back to reference Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1–2):174–180 Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1–2):174–180
120.
go back to reference Vékás L (2009) Ferrofluids and magnetorheological fluids. Adv Sci Technol 54:127–136 Vékás L (2009) Ferrofluids and magnetorheological fluids. Adv Sci Technol 54:127–136
121.
go back to reference Raj K, Moskowitz B (1990) Commercial applications of ferrofluids. J Magn Magn Mater 85(1–3):233–245 Raj K, Moskowitz B (1990) Commercial applications of ferrofluids. J Magn Magn Mater 85(1–3):233–245
122.
go back to reference Todorovic M, Schultz S, Wong J, Scherer A (1999) Writing and reading of single magnetic domain per bit perpendicular patterned media. Appl Phys Lett 74(17):2516–2518 Todorovic M, Schultz S, Wong J, Scherer A (1999) Writing and reading of single magnetic domain per bit perpendicular patterned media. Appl Phys Lett 74(17):2516–2518
123.
go back to reference Blums E (1995) Some new problems of complex thermomagnetic and diffusion-driven convection in magnetic colloids. J Magn Magn Mater 149(1–2):111–115 Blums E (1995) Some new problems of complex thermomagnetic and diffusion-driven convection in magnetic colloids. J Magn Magn Mater 149(1–2):111–115
124.
go back to reference Philip J, Rao CB, Jayakumar T, Raj B (2000) A new optical technique for detection of defects in ferromagnetic materials and components. NDT Int 33(5):289–295 Philip J, Rao CB, Jayakumar T, Raj B (2000) A new optical technique for detection of defects in ferromagnetic materials and components. NDT Int 33(5):289–295
125.
go back to reference Philip J, Jaykumar T, Kalyanasundaram P, Raj B (2003) A tunable optical filter. Meas Sci Tech 14(8):1289–1294 Philip J, Jaykumar T, Kalyanasundaram P, Raj B (2003) A tunable optical filter. Meas Sci Tech 14(8):1289–1294
126.
go back to reference Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301(5635):943–945 Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301(5635):943–945
127.
go back to reference Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197 Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197
128.
go back to reference Pankhurst QA (2006) Nanomagnetic medical sensors and treatment methodologies. BT Technol J 24(3):33–38 Pankhurst QA (2006) Nanomagnetic medical sensors and treatment methodologies. BT Technol J 24(3):33–38
129.
go back to reference Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, Morales MP, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103 Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, Morales MP, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103
130.
go back to reference Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46 Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46
131.
go back to reference Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194(1–3):108–112 Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194(1–3):108–112
132.
go back to reference Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606–613 Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606–613
133.
go back to reference Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94(3):217–224 Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94(3):217–224
134.
go back to reference Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886 Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886
135.
go back to reference Rheinländer T, Kötitz R, Weitschies W, Semmler W (2000) Magnetic fractionation of magnetic fluids. J Magn Magn Mater 219(2):219–228 Rheinländer T, Kötitz R, Weitschies W, Semmler W (2000) Magnetic fractionation of magnetic fluids. J Magn Magn Mater 219(2):219–228
136.
go back to reference Romanus E, Huckel M, Gross C, Prass S, Weitschies W, Brauer R, Weber P (2002) Magnetic nanoparticle relaxation measurement as a novel tool for in vivo diagnostics. J Magn Magn Mater 252(1–3):387–389 Romanus E, Huckel M, Gross C, Prass S, Weitschies W, Brauer R, Weber P (2002) Magnetic nanoparticle relaxation measurement as a novel tool for in vivo diagnostics. J Magn Magn Mater 252(1–3):387–389
137.
go back to reference Kim KW, Ha HK (2003) MRI for small bowel diseases. Semin Ultrasound CT MRI 24(5):387–402 Kim KW, Ha HK (2003) MRI for small bowel diseases. Semin Ultrasound CT MRI 24(5):387–402
138.
go back to reference Richardson JC, Bowtell RW, Mader K, Melia CD (2005) Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev 57(8):1191–1209 Richardson JC, Bowtell RW, Mader K, Melia CD (2005) Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev 57(8):1191–1209
139.
go back to reference Coroiu I (1999) Relaxivities of different superparamagnetic particles for application in NMR tomography. J Magn Magn Mater 201:449–452 Coroiu I (1999) Relaxivities of different superparamagnetic particles for application in NMR tomography. J Magn Magn Mater 201:449–452
140.
go back to reference Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482 Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482
141.
go back to reference Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225(1–2):256–261 Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225(1–2):256–261
142.
go back to reference Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499 Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499
143.
go back to reference Bjornerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17(7):465–477 Bjornerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17(7):465–477
144.
go back to reference Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419 Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419
145.
go back to reference Andra W, d’Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194(1–3):197–203 Andra W, d’Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194(1–3):197–203
146.
go back to reference Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles—an in vitro study. Invest Radiol 35(3):170–179 Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles—an in vitro study. Invest Radiol 35(3):170–179
147.
go back to reference Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497 Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497
148.
go back to reference Pardoe H, Clark PR, St Pierre TG, Moroz P, Jones SK (2003) A magnetic resonance imaging based method for measurement of tissue iron concentration in liver arterially embolized with ferrimagnetic particles designed for magnetic hyperthermia treatment of tumors. Magn Reson Imaging 21(5):483–488 Pardoe H, Clark PR, St Pierre TG, Moroz P, Jones SK (2003) A magnetic resonance imaging based method for measurement of tissue iron concentration in liver arterially embolized with ferrimagnetic particles designed for magnetic hyperthermia treatment of tumors. Magn Reson Imaging 21(5):483–488
149.
go back to reference Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175 Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175
150.
go back to reference Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693 Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693
151.
go back to reference Bonadonna G, Gianni L, Santoro A, Bonfante V, Bidoli P, Casali P, Demicheli R, Valagussa P (1993) Drugs 10 years later—epirubicin. Ann Oncol 4(5):359–369 Bonadonna G, Gianni L, Santoro A, Bonfante V, Bidoli P, Casali P, Demicheli R, Valagussa P (1993) Drugs 10 years later—epirubicin. Ann Oncol 4(5):359–369
152.
go back to reference Lübbe AS, Bergemann C, Brock J, McClure DG (1999) Physiological aspects in magnetic drug-targeting. J Magn Magn Mater 194(1–3):149–155 Lübbe AS, Bergemann C, Brock J, McClure DG (1999) Physiological aspects in magnetic drug-targeting. J Magn Magn Mater 194(1–3):149–155
153.
go back to reference Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542 Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542
Metadata
Title
Pros and Cons on Magnetic Nanoparticles Use in Biomedicine and Biotechnologies Applications
Authors
Florina M. Bojin
Virgil Paunescu
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-11728-7_7

Premium Partners