Skip to main content
Top

2021 | OriginalPaper | Chapter

20. Prospective Utilization of Coal Fly Ash for Making Advanced Materials

Authors : Aritra Kumar Dan, Dipanjan Bhattacharjee, Saikat Ghosh, Saroj Sekhar Behera, Birendra Kumar Bindhani, Debadutta Das, Pankaj Kumar Parhi

Published in: Clean Coal Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Coal waste is a fine glass-like solid residue or by-product of the thermal power plant generally collected from the electrostatic precipitator (ESP-2) before flue gas reach out chimneys. As a consequence of time, the overall generation of coal fly ash (CFA) from different domains is being increased worldwide and becomes a very serious environmental issue on its disposal which creates direct effects on soil, air, and water. Though in most of all cases the coal waste (FA) is being used as a land filler for road making, which also causes a substantial threat for the environment owing to bearing toxic metals and other inorganic minerals in it. Therefore, researchers attempted to develop many methodologies for major utilization of these coal wastes after recovering metal values through a suitable leaching processing approach. The CFA resulted from thermal power plant act as the effective product and get attention as the potential raw materials having less harmful, less toxicity afterconverting it to valuable products or substitute raw materials to manufacture valuable products. Presently over 300 Million Tons of FA is being generated worldwide from the thermal plant sectors, but that accounts only about 10–30% of overall FA production is being used worldwide for developing valuable products. Due to the impactful conversion of coal waste to valuable products, environmental pollution is decreasing day-by-day. The various types of useful products from CFA have already been existed in global markets (like Cement, Bricks, and Tiles), and some are under developmental and experimental stages (Matrix membrane, Biodiesel production, lightweight wall element, and lathy tobermorite fiber).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alami, J., & Akhtar, M. N. (2011). Fly ash utilisation in different sectors in Indian scenario. International Journal of Emerging Trends in Engineering and Development, 1(1), 1–14. Alami, J., & Akhtar, M. N. (2011). Fly ash utilisation in different sectors in Indian scenario. International Journal of Emerging Trends in Engineering and Development, 1(1), 1–14.
go back to reference Asl, S. M. H., Javadian, H., Khavarpour, M., Belviso, C., Taghavi, M., & Maghsudi, M. (2019). Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. Journal of Cleaner Production, 208, 1131–1147.CrossRef Asl, S. M. H., Javadian, H., Khavarpour, M., Belviso, C., Taghavi, M., & Maghsudi, M. (2019). Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. Journal of Cleaner Production, 208, 1131–1147.CrossRef
go back to reference Azhar, N. S. D. M., Zainal, F. F., & Abdullah, M. M. A. B. (2019). Effect of different ratio of geopolymer paste based fly ash-metakaolin on compressive strength and water absorption. IOP Science, Materials Science and Engineering, 701, 012010. Azhar, N. S. D. M., Zainal, F. F., & Abdullah, M. M. A. B. (2019). Effect of different ratio of geopolymer paste based fly ash-metakaolin on compressive strength and water absorption. IOP Science, Materials Science and Engineering, 701, 012010.
go back to reference Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147.CrossRef Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147.CrossRef
go back to reference Belviso, C., Giannossa, L. C., Huertas, F. J., Lettino, A., Mangone, A., & Fiore, S. (2015). Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous and Mesoporous Materials, 212, 35–47.CrossRef Belviso, C., Giannossa, L. C., Huertas, F. J., Lettino, A., Mangone, A., & Fiore, S. (2015). Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous and Mesoporous Materials, 212, 35–47.CrossRef
go back to reference Bharathi, V., Ramachandra, M., & Srinivas, S. (2017). Influence of fly ash content in aluminium matrix composite produced by stir-squeeze casting on the scratching abrasion resistance, hardness and density levels. Materials Today: Proceedings, 4, 7397–7405. Bharathi, V., Ramachandra, M., & Srinivas, S. (2017). Influence of fly ash content in aluminium matrix composite produced by stir-squeeze casting on the scratching abrasion resistance, hardness and density levels. Materials Today: Proceedings, 4, 7397–7405.
go back to reference Bilir, T., Gencel, O., & Topcu, I. B. (2015). Properties of mortars with fly ash as fine aggregate. Construction and Building Materials, 93, 782–789.CrossRef Bilir, T., Gencel, O., & Topcu, I. B. (2015). Properties of mortars with fly ash as fine aggregate. Construction and Building Materials, 93, 782–789.CrossRef
go back to reference Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.CrossRef Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.CrossRef
go back to reference Cao, P., Li, G., Luo, J., Rao, M., Jiang, H., Peng, Z., & Jiang, T. (2020). Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime. Construction and Building Materials, 238, 117655.CrossRef Cao, P., Li, G., Luo, J., Rao, M., Jiang, H., Peng, Z., & Jiang, T. (2020). Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime. Construction and Building Materials, 238, 117655.CrossRef
go back to reference Changa, C. Y., Wangb, C. F., Muib, D. T., & Chiangc, H. L. (2009). Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: A case study for BCR 176. Journal of Hazardous Materials, 163, 578–587.CrossRef Changa, C. Y., Wangb, C. F., Muib, D. T., & Chiangc, H. L. (2009). Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: A case study for BCR 176. Journal of Hazardous Materials, 163, 578–587.CrossRef
go back to reference Chen, F., Zhang, Y., Liu, J., Wang, X., Chu, P. K., Chu, B., & Zhang, N. (2020). Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Construction and Building Materials, 249, 118728.CrossRef Chen, F., Zhang, Y., Liu, J., Wang, X., Chu, P. K., Chu, B., & Zhang, N. (2020). Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Construction and Building Materials, 249, 118728.CrossRef
go back to reference Chen, X., Wang, H., Najm, H., Venkiteela, G., & Hencken, J. (2019). Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. Journal of Cleaner Production, 237, 117714.CrossRef Chen, X., Wang, H., Najm, H., Venkiteela, G., & Hencken, J. (2019). Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. Journal of Cleaner Production, 237, 117714.CrossRef
go back to reference Chousidis, N., Ioannou, I., Rakanta, E., Koutsodontis, C., & Batis, G. (2016). Effect of fly ash chemical composition on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes. Construction and Building Materials, 126, 86–97.CrossRef Chousidis, N., Ioannou, I., Rakanta, E., Koutsodontis, C., & Batis, G. (2016). Effect of fly ash chemical composition on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes. Construction and Building Materials, 126, 86–97.CrossRef
go back to reference Chousidis, N., Rakanta, E., Ioannou, I., & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials, 101, 810–817.CrossRef Chousidis, N., Rakanta, E., Ioannou, I., & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials, 101, 810–817.CrossRef
go back to reference Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials, 94, 521–527.CrossRef Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials, 94, 521–527.CrossRef
go back to reference De Rossi, A., Ribeiro, M. J., Labrincha, J. A., Novais, R. M., Hotza, D., & Moreira, R. F. P. M. (2019). Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process Safety and Environmental Protection, 129, 130–137.CrossRef De Rossi, A., Ribeiro, M. J., Labrincha, J. A., Novais, R. M., Hotza, D., & Moreira, R. F. P. M. (2019). Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process Safety and Environmental Protection, 129, 130–137.CrossRef
go back to reference De Rossia, A., Simãob, L., Ribeiroc, M. J., Hotza, D., & Moreira, R. D. F. P. M. (2020). Study of cure conditions effect on the properties of wood biomass fly ash geopolymers. Journal of Materials Research and Technology, 09, 7518–7528.CrossRef De Rossia, A., Simãob, L., Ribeiroc, M. J., Hotza, D., & Moreira, R. D. F. P. M. (2020). Study of cure conditions effect on the properties of wood biomass fly ash geopolymers. Journal of Materials Research and Technology, 09, 7518–7528.CrossRef
go back to reference Dindi, A., Quang, D. V., Vega, L. F., Nashef, E., & Abu-Zahra, M. R. M. (2019). Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization, 29, 82–102.CrossRef Dindi, A., Quang, D. V., Vega, L. F., Nashef, E., & Abu-Zahra, M. R. M. (2019). Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization, 29, 82–102.CrossRef
go back to reference Duan, P., Yan, C., Zhou, W., & Ren, D. (2016). Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Construction and Building Materials, 118, 76–88.CrossRef Duan, P., Yan, C., Zhou, W., & Ren, D. (2016). Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Construction and Building Materials, 118, 76–88.CrossRef
go back to reference Dutta, S., Nadaf, M. B., & Mandal, J. N. (2016). An overview on the use of waste plastic bottles and fly ash in civil engineering applications. Procedia Environmental Sciences, 35, 681–691.CrossRef Dutta, S., Nadaf, M. B., & Mandal, J. N. (2016). An overview on the use of waste plastic bottles and fly ash in civil engineering applications. Procedia Environmental Sciences, 35, 681–691.CrossRef
go back to reference Dwivedi, A., & Jain, M. K. (2014). Fly ash – waste management and overview: A Review. Recent Research in Science and Technology, 6, 30–35. Dwivedi, A., & Jain, M. K. (2014). Fly ash – waste management and overview: A Review. Recent Research in Science and Technology, 6, 30–35.
go back to reference Fang, G., & Zhang, M. (2020). The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete. Cement and Concrete Research, 129, 105963.CrossRef Fang, G., & Zhang, M. (2020). The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete. Cement and Concrete Research, 129, 105963.CrossRef
go back to reference Fannghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172–179.CrossRef Fannghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172–179.CrossRef
go back to reference Gianoncelli, A., Zacco, A., Struis, R. P. W. J., Borgese, L., Depero, L. E., & Bontempi, E. (2013). Fly ash pollutants, treatment and recycling. In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant diseases, remediation and recycling. Environmental chemistry for a sustainable world (Vol. 04, pp. 103–213). Cham: Springer.CrossRef Gianoncelli, A., Zacco, A., Struis, R. P. W. J., Borgese, L., Depero, L. E., & Bontempi, E. (2013). Fly ash pollutants, treatment and recycling. In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant diseases, remediation and recycling. Environmental chemistry for a sustainable world (Vol. 04, pp. 103–213). Cham: Springer.CrossRef
go back to reference Gokulraj, S., Shakthivel, T. K., Thirunavukarasu, S., & Myilnagaraja, B. (2019). brication of composite material using fly ash and plastic powder. International Journal of Innovative Research in Advanced Engineering, 06, 45–48. Gokulraj, S., Shakthivel, T. K., Thirunavukarasu, S., & Myilnagaraja, B. (2019). brication of composite material using fly ash and plastic powder. International Journal of Innovative Research in Advanced Engineering, 06, 45–48.
go back to reference Haleem, A., Luthra, S., Mannan, B., Khurana, S., Kumar, S., & Ahmad, S. (2016). Critical ctors for the successful usage of fly ash in roads & bridges and embankments: Analyzing indian perspective. Resources Policy, 49, 334–348.CrossRef Haleem, A., Luthra, S., Mannan, B., Khurana, S., Kumar, S., & Ahmad, S. (2016). Critical ctors for the successful usage of fly ash in roads & bridges and embankments: Analyzing indian perspective. Resources Policy, 49, 334–348.CrossRef
go back to reference Hermassi, M., Valderrama, C., Font, O., Moreno, N., Querol, X., Batis, N. H., & Cortina, J. L. (2020). Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Science of the Total Environment, 731, 139002.CrossRef Hermassi, M., Valderrama, C., Font, O., Moreno, N., Querol, X., Batis, N. H., & Cortina, J. L. (2020). Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Science of the Total Environment, 731, 139002.CrossRef
go back to reference Hu, Y., Tang, Z., Li, W., Li, Y., & Tam, V. W. Y. (2019). Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 226, 139–151.CrossRef Hu, Y., Tang, Z., Li, W., Li, Y., & Tam, V. W. Y. (2019). Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 226, 139–151.CrossRef
go back to reference Kassa, R. B., Kanali, C., & Ambassah, N. (2019a). Engineering properties of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. IISTE Civil and Environmental Research, 11, 25–34. Kassa, R. B., Kanali, C., & Ambassah, N. (2019a). Engineering properties of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. IISTE Civil and Environmental Research, 11, 25–34.
go back to reference Kassa, R. B., Kanali, C., & Ambassah, N. (2019b). Flexural performance evaluation of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. International Journal of Engineering Research and Technology, 12, 1417–1422. Kassa, R. B., Kanali, C., & Ambassah, N. (2019b). Flexural performance evaluation of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. International Journal of Engineering Research and Technology, 12, 1417–1422.
go back to reference Kim, M., Ko, H., Kwonb, T., Bae, H. C., Jang, C. H., Heo, B. U., & Parka, S. M. (2020a). Development of novel refractory ceramic continuous fibers of fly ash and comparison of mechanical properties with those of E-glass fibers using the Weibull distribution. Ceramics International, 46, 13255–13262.CrossRef Kim, M., Ko, H., Kwonb, T., Bae, H. C., Jang, C. H., Heo, B. U., & Parka, S. M. (2020a). Development of novel refractory ceramic continuous fibers of fly ash and comparison of mechanical properties with those of E-glass fibers using the Weibull distribution. Ceramics International, 46, 13255–13262.CrossRef
go back to reference Kim, T., Ley, M. T., Kang, S., Davis, J. M., Kim, S., & Amrollahi, P. (2020b). Using particle composition of fly ash to predict concrete strength and electrical resistivity. Cement and Concrete Composites, 107, 103493.CrossRef Kim, T., Ley, M. T., Kang, S., Davis, J. M., Kim, S., & Amrollahi, P. (2020b). Using particle composition of fly ash to predict concrete strength and electrical resistivity. Cement and Concrete Composites, 107, 103493.CrossRef
go back to reference Kirankumar, G., Saboor, S., & Babu, T. P. A. (2016). Investigation of different window and wall materials for solar passive building design. Procedia Technology, 24, 523–530.CrossRef Kirankumar, G., Saboor, S., & Babu, T. P. A. (2016). Investigation of different window and wall materials for solar passive building design. Procedia Technology, 24, 523–530.CrossRef
go back to reference Komonweeraket, K., Cetin, B., Benson, C. H., Aydilek, A. H., & Edil, T. B. (2015). Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Waste Management, 38, 174–184.CrossRef Komonweeraket, K., Cetin, B., Benson, C. H., Aydilek, A. H., & Edil, T. B. (2015). Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Waste Management, 38, 174–184.CrossRef
go back to reference Kua, T. A., Imteaz, M. A., Arulrajah, A., & Horpibulsuk, S. (2018). Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground. International Journal of Sustainable Engineering, 12, 223–232.CrossRef Kua, T. A., Imteaz, M. A., Arulrajah, A., & Horpibulsuk, S. (2018). Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground. International Journal of Sustainable Engineering, 12, 223–232.CrossRef
go back to reference Lee, H., Vimonsatit, V., & Chindaprasirt, P. (2016). Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation. Construction and Building Materials, 107, 95–102.CrossRef Lee, H., Vimonsatit, V., & Chindaprasirt, P. (2016). Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation. Construction and Building Materials, 107, 95–102.CrossRef
go back to reference Lieberman, R. N., Green, U., Segev, G., Polat, M., Mastai, Y., & Cohen, H. (2015). Coal fly ash as a potential fixation reagent for radioactive wastes. Fuel, 153, 437–444.CrossRef Lieberman, R. N., Green, U., Segev, G., Polat, M., Mastai, Y., & Cohen, H. (2015). Coal fly ash as a potential fixation reagent for radioactive wastes. Fuel, 153, 437–444.CrossRef
go back to reference Liu, L., Peng, B., Yue, C., Guo, M., & Zhang, M. (2019). Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a cile process for building energy efficiency. Materials Chemistry and Physics, 222, 87–95.CrossRef Liu, L., Peng, B., Yue, C., Guo, M., & Zhang, M. (2019). Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a cile process for building energy efficiency. Materials Chemistry and Physics, 222, 87–95.CrossRef
go back to reference Lokeshappa, B., & Dikshit, A. K. (2011). Disposal and management of coal fly ash. IPCBEE, 03, 11–14. Lokeshappa, B., & Dikshit, A. K. (2011). Disposal and management of coal fly ash. IPCBEE, 03, 11–14.
go back to reference Mármol, G., Savastano, H., Jr., Monzó, J. M., Borrachero, M. V., Soriano, L., & Payá, J. (2016). Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement. Construction and Building Materials, 124, 208–218.CrossRef Mármol, G., Savastano, H., Jr., Monzó, J. M., Borrachero, M. V., Soriano, L., & Payá, J. (2016). Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement. Construction and Building Materials, 124, 208–218.CrossRef
go back to reference Ming, L. Y., Sandu, A. V., Yong, H. C., Tajunnisa, Y., Azzahran, S. F., Bayuji, R., Abdullah, M. M. A. B., Vizureanu, P., Hussin, K., Jin, T. S., & Loong, F. K. (2019). Compressive strength and thermal conductivity of fly ash geopolymer concrete incorporated with lightweight aggregate, expanded clay aggregate and foaming agent. Revista de Chimie, 70, 4021–4028.CrossRef Ming, L. Y., Sandu, A. V., Yong, H. C., Tajunnisa, Y., Azzahran, S. F., Bayuji, R., Abdullah, M. M. A. B., Vizureanu, P., Hussin, K., Jin, T. S., & Loong, F. K. (2019). Compressive strength and thermal conductivity of fly ash geopolymer concrete incorporated with lightweight aggregate, expanded clay aggregate and foaming agent. Revista de Chimie, 70, 4021–4028.CrossRef
go back to reference Moftt, E. G., Thomas, M. D. A., & Him, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research, 102, 127–135.CrossRef Moftt, E. G., Thomas, M. D. A., & Him, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research, 102, 127–135.CrossRef
go back to reference Mohamad, M., Noor, M. M., & Key, T. P. (2019). Compressive strength of foamed cement composites with the addition of fly ash and polystyrene beads. Advanced Journal of Technical and Vocational Education, 03, 01–06. Mohamad, M., Noor, M. M., & Key, T. P. (2019). Compressive strength of foamed cement composites with the addition of fly ash and polystyrene beads. Advanced Journal of Technical and Vocational Education, 03, 01–06.
go back to reference Moyo, V., Mguni, N. G., Hlabangana, N., & Danha, G. (2019). Use of coal fly ash to manufacture a corrosion resistant brick. Procedia Manufacturing, 35, 500–512.CrossRef Moyo, V., Mguni, N. G., Hlabangana, N., & Danha, G. (2019). Use of coal fly ash to manufacture a corrosion resistant brick. Procedia Manufacturing, 35, 500–512.CrossRef
go back to reference Musyoka, N. M., Ren, J., Langmi, H. W., North, B. C., & Mathe, M. (2015). A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives. International Journal of Hydrogen Energy, 40, 12705–12712.CrossRef Musyoka, N. M., Ren, J., Langmi, H. W., North, B. C., & Mathe, M. (2015). A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives. International Journal of Hydrogen Energy, 40, 12705–12712.CrossRef
go back to reference Natha, P., Sarkera, P. K., & Rangan, V. B. (2015). Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Engineering, 125, 601–607.CrossRef Natha, P., Sarkera, P. K., & Rangan, V. B. (2015). Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Engineering, 125, 601–607.CrossRef
go back to reference Ngernkham, T. P., Phiangphimai, C., Intarabut, D., Hanjitsuwan, S., Damrongwiriyanupap, N., Li, L. Y., & Chindaprasirt, P. (2020). Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Construction and Building Materials, 247, 118543.CrossRef Ngernkham, T. P., Phiangphimai, C., Intarabut, D., Hanjitsuwan, S., Damrongwiriyanupap, N., Li, L. Y., & Chindaprasirt, P. (2020). Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Construction and Building Materials, 247, 118543.CrossRef
go back to reference Nguyen, H. A., Chang, T. P., Shih, J. Y., Chen, C. T., & Nguyen, T. D. (2015). Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HV) cement paste. Construction and Building Materials, 91, 208–215.CrossRef Nguyen, H. A., Chang, T. P., Shih, J. Y., Chen, C. T., & Nguyen, T. D. (2015). Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HV) cement paste. Construction and Building Materials, 91, 208–215.CrossRef
go back to reference Nie, Q., Zhou, C., Li, H., Shu, X., Gong, H., & Huang, B. (2015). Numerical simulation of fly ash concrete under sulfate attack. Construction and Building Materials, 84, 261–268.CrossRef Nie, Q., Zhou, C., Li, H., Shu, X., Gong, H., & Huang, B. (2015). Numerical simulation of fly ash concrete under sulfate attack. Construction and Building Materials, 84, 261–268.CrossRef
go back to reference Pavlović, S. M., Marinković, D. M., Kostić, M. D., Častvan, I. M. J., Mojović, L. V., Stanković, M. V., & Veljković, V. B. (2020). A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production. Fuel, 267, 117171.CrossRef Pavlović, S. M., Marinković, D. M., Kostić, M. D., Častvan, I. M. J., Mojović, L. V., Stanković, M. V., & Veljković, V. B. (2020). A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production. Fuel, 267, 117171.CrossRef
go back to reference Pedrazaa, S. P., Pinedaa, Y., & Gutiérrez, O. (2015). Influence of the unburned residues in fly ash additives on the mechanical properties of cement mortars. Procedia Materials Science, 09, 496–503.CrossRef Pedrazaa, S. P., Pinedaa, Y., & Gutiérrez, O. (2015). Influence of the unburned residues in fly ash additives on the mechanical properties of cement mortars. Procedia Materials Science, 09, 496–503.CrossRef
go back to reference Ramanathan, S., Gopinath, S. C. B., Arshad, M. K. M., & Poopalan, P. (2020). Nanostructured aluminosilicate from fly ash: Potential approach in waste utilization for industrial and medical applications. Journal of Cleaner Production, 253, 119923.CrossRef Ramanathan, S., Gopinath, S. C. B., Arshad, M. K. M., & Poopalan, P. (2020). Nanostructured aluminosilicate from fly ash: Potential approach in waste utilization for industrial and medical applications. Journal of Cleaner Production, 253, 119923.CrossRef
go back to reference Ren, X., Liu, S., Qu, R., Xiao, L., Hu, P., Song, H., Wu, W., Zheng, C., Wu, X., & Gao, X. (2020). Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption. Microporous and Mesoporous Materials, 295, 109940.CrossRef Ren, X., Liu, S., Qu, R., Xiao, L., Hu, P., Song, H., Wu, W., Zheng, C., Wu, X., & Gao, X. (2020). Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption. Microporous and Mesoporous Materials, 295, 109940.CrossRef
go back to reference Ridtirud, C., & Chindaprasirt, P. (2019). Properties of light weight aerated geopolymer synthesis from high-calcium fly ash and aluminium powder. International Journal of Geomate, 16, 67–75.CrossRef Ridtirud, C., & Chindaprasirt, P. (2019). Properties of light weight aerated geopolymer synthesis from high-calcium fly ash and aluminium powder. International Journal of Geomate, 16, 67–75.CrossRef
go back to reference Rivera, F., Martínez, P., Castro, J., & López, M. (2015). Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cement and Concrete Composites, 63, 104–112.CrossRef Rivera, F., Martínez, P., Castro, J., & López, M. (2015). Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cement and Concrete Composites, 63, 104–112.CrossRef
go back to reference Roviello, G., Ricciotti, L., Molino, A. J., Menna, C., Ferone, C., Cio, R., & Tarallo, O. (2019). Hybrid geopolymers from fly ash and polysiloxanes. Molecules, 24, 3510.CrossRef Roviello, G., Ricciotti, L., Molino, A. J., Menna, C., Ferone, C., Cio, R., & Tarallo, O. (2019). Hybrid geopolymers from fly ash and polysiloxanes. Molecules, 24, 3510.CrossRef
go back to reference Sahu, S., Sarkar, P., & Davis, R. (2019). Quantification of uncertainty in compressive strength of fly ash brick masonry. Journal of Building Engineering, 26, 100843.CrossRef Sahu, S., Sarkar, P., & Davis, R. (2019). Quantification of uncertainty in compressive strength of fly ash brick masonry. Journal of Building Engineering, 26, 100843.CrossRef
go back to reference Santamaría, A., Rojí, E., Skaf, M., Marcos, I., & González, J. J. (2016). The use of steelmaking slags and fly ash in structural mortars. Construction and Building Materials, 106, 364–373.CrossRef Santamaría, A., Rojí, E., Skaf, M., Marcos, I., & González, J. J. (2016). The use of steelmaking slags and fly ash in structural mortars. Construction and Building Materials, 106, 364–373.CrossRef
go back to reference Senapati, M. R. (2011). Fly ash from thermal power plants waste management and overview. Current Science, 100, 1791–1794. Senapati, M. R. (2011). Fly ash from thermal power plants waste management and overview. Current Science, 100, 1791–1794.
go back to reference Senthil, K. M., Vanmathi, M., Senguttuvan, G., Mangalaraja, R. V., & Sakthivel, G. (2019). Fly ash constituent-silica and alumina role in the synthesis and characterization of cordierite based ceramics. SILICON, 11, 2599–2611.CrossRef Senthil, K. M., Vanmathi, M., Senguttuvan, G., Mangalaraja, R. V., & Sakthivel, G. (2019). Fly ash constituent-silica and alumina role in the synthesis and characterization of cordierite based ceramics. SILICON, 11, 2599–2611.CrossRef
go back to reference Seto, K. E., Churchill, C. J., & Panesar, D. K. (2017). Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. Journal of Cleaner Production, 157, 65–75.CrossRef Seto, K. E., Churchill, C. J., & Panesar, D. K. (2017). Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. Journal of Cleaner Production, 157, 65–75.CrossRef
go back to reference Shaikh, F. U. A., & Supit, S. W. M. (2015). Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Construction and Building Materials, 99, 208–225.CrossRef Shaikh, F. U. A., & Supit, S. W. M. (2015). Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Construction and Building Materials, 99, 208–225.CrossRef
go back to reference Sharma, V., & Akhai, S. (2019). Trends in utilization of coal fly ash in India: A review. Journal of Engineering Design and Analysis, 02, 12–16. Sharma, V., & Akhai, S. (2019). Trends in utilization of coal fly ash in India: A review. Journal of Engineering Design and Analysis, 02, 12–16.
go back to reference Silva, S. R. D., & Andrade, J. J. D. O. (2017). Investigation of mechanical properties and carbonation of concretes with construction and demolition waste and fly ash. Construction and Building Materials, 153, 704–715.CrossRef Silva, S. R. D., & Andrade, J. J. D. O. (2017). Investigation of mechanical properties and carbonation of concretes with construction and demolition waste and fly ash. Construction and Building Materials, 153, 704–715.CrossRef
go back to reference Supit, S. W. M., Shaikh, F. U. A., & Sarker, P. K. (2014). Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Construction and Building Materials, 51, 278–286.CrossRef Supit, S. W. M., Shaikh, F. U. A., & Sarker, P. K. (2014). Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Construction and Building Materials, 51, 278–286.CrossRef
go back to reference Suresh, K., Pugazhenthi, G., & Uppaluri, R. (2016). Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surcemethodology. Journal of Water Process Engineering, 13, 27–43.CrossRef Suresh, K., Pugazhenthi, G., & Uppaluri, R. (2016). Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surcemethodology. Journal of Water Process Engineering, 13, 27–43.CrossRef
go back to reference Tennakoon, C., Crentsil, K. S., Nicolas, R. S., & Sanjayan, J. G. (2015). Characteristics of Australian brown coal fly ash blended geopolymers. Construction and Building Materials, 101, 396–409.CrossRef Tennakoon, C., Crentsil, K. S., Nicolas, R. S., & Sanjayan, J. G. (2015). Characteristics of Australian brown coal fly ash blended geopolymers. Construction and Building Materials, 101, 396–409.CrossRef
go back to reference Tennakoon, C., Nazari, A., Sanjayan, J. G., & Crentsil, K. S. (2014). Distribution of oxides in fly ash controls strength evolution of geopolymers. Construction and Building Materials, 71, 72–82.CrossRef Tennakoon, C., Nazari, A., Sanjayan, J. G., & Crentsil, K. S. (2014). Distribution of oxides in fly ash controls strength evolution of geopolymers. Construction and Building Materials, 71, 72–82.CrossRef
go back to reference Tiwari, M. K., Bajpai, S., & Dewangan, U. K. (2016). Fly ash utilization: A brief review in Indian context. International Research Journal of Engineering and Technology (IRJET), 03, 949–956. Tiwari, M. K., Bajpai, S., & Dewangan, U. K. (2016). Fly ash utilization: A brief review in Indian context. International Research Journal of Engineering and Technology (IRJET), 03, 949–956.
go back to reference Trisnaliani, L., Purnamasari, I., & Ahmadan, F. (2019). Performance of silica membranes from fly ash coal of PT semen baturaja in reducing metal content in mine acid water. Indonesian Journal of Fundamental and Applied Chemistry, 04, 9–14.CrossRef Trisnaliani, L., Purnamasari, I., & Ahmadan, F. (2019). Performance of silica membranes from fly ash coal of PT semen baturaja in reducing metal content in mine acid water. Indonesian Journal of Fundamental and Applied Chemistry, 04, 9–14.CrossRef
go back to reference Tudjonoa, S., Purwanto, X. X. X., & Apsari, K. T. (2014). Study the effect of adding nano fly ash and nano lime to compressive strength of mortar. Procedia Engineering, 95, 426–432.CrossRef Tudjonoa, S., Purwanto, X. X. X., & Apsari, K. T. (2014). Study the effect of adding nano fly ash and nano lime to compressive strength of mortar. Procedia Engineering, 95, 426–432.CrossRef
go back to reference Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F., & Gomez, A. C. (2016). Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials, 128, 248–255.CrossRef Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F., & Gomez, A. C. (2016). Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials, 128, 248–255.CrossRef
go back to reference Wongsa, A., Wongkvanklom, A., Tanangteerapong, D., & Chindaprasirt, P. (2020). Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. Journal of Sustainable Cement-Based Materials, 9(5), 307–321.CrossRef Wongsa, A., Wongkvanklom, A., Tanangteerapong, D., & Chindaprasirt, P. (2020). Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. Journal of Sustainable Cement-Based Materials, 9(5), 307–321.CrossRef
go back to reference Wu, T., Chi, M., & Huang, R. (2014). Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash. Construction and Building Materials, 66, 172–180.CrossRef Wu, T., Chi, M., & Huang, R. (2014). Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash. Construction and Building Materials, 66, 172–180.CrossRef
go back to reference Zhang, Z., Wang, H., Zhu, Y., Reid, A., Provis, J. L., & Bullen, F. (2014). Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science, 88–89, 194–201.CrossRef Zhang, Z., Wang, H., Zhu, Y., Reid, A., Provis, J. L., & Bullen, F. (2014). Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science, 88–89, 194–201.CrossRef
go back to reference Zhipeng, T., Bingru, Z., Chengjun, H., Rongzhi, T., Huangpu, Z., & Fengting, L. (2015). The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Safety and Environmental Protection, 98, 333–341.CrossRef Zhipeng, T., Bingru, Z., Chengjun, H., Rongzhi, T., Huangpu, Z., & Fengting, L. (2015). The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Safety and Environmental Protection, 98, 333–341.CrossRef
go back to reference Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267.CrossRef Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267.CrossRef
Metadata
Title
Prospective Utilization of Coal Fly Ash for Making Advanced Materials
Authors
Aritra Kumar Dan
Dipanjan Bhattacharjee
Saikat Ghosh
Saroj Sekhar Behera
Birendra Kumar Bindhani
Debadutta Das
Pankaj Kumar Parhi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68502-7_20