Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Proton Conductors: Physics and Technological Advancements for PC-SOFC

Authors : D. Vignesh, Ela Rout

Published in: Energy Materials

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electroceramics are functional materials with a complex interplay between structural, chemical and electrophysical properties. Significant reliability over energy storage and conversion devices has outgrown over the years in search of sustainability. The advent of eco-friendly continuous energy extraction with liberty over fuel flexibility at intermediate temperatures (400–700 °C) reveals the monopoly of proton conductors (PCs) as an effective electrolyte for proton-conducting solid oxide fuel cells (PC-SOFC). They illustrate high operation efficiency (60–80%) and energy density over existing energy storage devices (capacitors, batteries and combustion engines) with a compromise over power density. The electrochemical activity of PCs is in principle different from distinct fuel cells which are categorized on the nature of electrolyte and diffusing charge carriers alongside operating temperature regimes. PC-SOFC thus bridges the research gap between high-temperature (SOFC) and low-temperature (PEMFC) applications. The intermediate operation devoid the use of catalysts for requisite electrochemical kinetics across the electrode–electrolyte interface with simultaneous compatibility of fuel cell’s components. Unlike key limitations in SOFC owing to high operating temperatures, PC-SOFC forbids major limitations. The anti-phase consistency between chemical and electrophysical parameters obstructs the commercialization of PCs for technological advancements. The fundaments of which lie with the physics of structural perturbations and inflexions in charge chemistry. Lower symmetry shifts (distorted structures) although assist unimpeded charge dynamics, yet lag in cooperative chemical compatibility. Attempts of material engineering via heterogeneous impurity substitutions in terms of acceptor dopants at the B-site of perovskite PCs have been executed to pacify the existing trade-off. Compositional-induced charge trapping effect constituted by increasing impurities presents novel material engineering limitations. Thus, preserving the host characteristics with additional improvement in thermal, chemical and electrical properties has recently become the principal motive of research with PCs. Since the charge kinetics is determined at the electrode–electrolyte interface, suitable sealant and blend of composite electrodes with thin epitaxially grown film electrolytes have cultivated a unique research perspective. The chapter encloses the backbone of energy materials for energy conversion devices (fuel cells) with a detailed emphasis on the physics of electrochemistry in perovskite-type PCs (BaCeO3 and BaZrO3). The miscellaneous motive also associates compiled outcomes and a summary of novel constraints (proton trapping effect) associated with material processing and architecture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Tahir NNM, Baharuddin NA, Samat AA et al (2022) A review on cathode materials for conventional and proton-conducting solid oxide fuel cells. J Alloys Compd 894:162458CrossRef Tahir NNM, Baharuddin NA, Samat AA et al (2022) A review on cathode materials for conventional and proton-conducting solid oxide fuel cells. J Alloys Compd 894:162458CrossRef
12.
go back to reference Scherban T, Villeneuve R, Abello L, Lucazeau G (1993) Raman scattering study of acceptor-doped BaCeO3. Solid State Ionics 61:93–98 Scherban T, Villeneuve R, Abello L, Lucazeau G (1993) Raman scattering study of acceptor-doped BaCeO3. Solid State Ionics 61:93–98
13.
go back to reference Takeuchi K, Loong C-K, Richardson JW Jr et al (2000) The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ionics 138:63–77CrossRef Takeuchi K, Loong C-K, Richardson JW Jr et al (2000) The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ionics 138:63–77CrossRef
14.
go back to reference Rajendran S, Thangavel NK, Ding H et al (2020) Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS Appl Mater Interfaces 12:38275–38284CrossRef Rajendran S, Thangavel NK, Ding H et al (2020) Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS Appl Mater Interfaces 12:38275–38284CrossRef
15.
go back to reference Sagar R, Gaur MS, Raghav RK (2022) Study of structural, thermal and piezoelectric properties of polyvinylidene fluoride–BaZrO3 nanocomposites. J Therm Anal Calorim 147:10371–10381CrossRef Sagar R, Gaur MS, Raghav RK (2022) Study of structural, thermal and piezoelectric properties of polyvinylidene fluoride–BaZrO3 nanocomposites. J Therm Anal Calorim 147:10371–10381CrossRef
16.
go back to reference Rahman MA, Hasan W, Khatun R et al (2023) An ab-initio study to investigate the structural, mechanical, electrical, optical and thermal properties of the AZrO3 (A = Mg, Ca, Sr, Ba, Sn, Cu) compounds. Mater Today Commun 105339 Rahman MA, Hasan W, Khatun R et al (2023) An ab-initio study to investigate the structural, mechanical, electrical, optical and thermal properties of the AZrO3 (A = Mg, Ca, Sr, Ba, Sn, Cu) compounds. Mater Today Commun 105339
17.
go back to reference Nayak AK, Sasmal A (2023) Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell. J Clean Prod 135827 Nayak AK, Sasmal A (2023) Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell. J Clean Prod 135827
18.
go back to reference Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3869CrossRef Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3869CrossRef
19.
go back to reference Zhang Z, Pan S-Y, Li H et al (2020) Recent advances in carbon dioxide utilization. Renew Sustain Energy Rev 125:109799CrossRef Zhang Z, Pan S-Y, Li H et al (2020) Recent advances in carbon dioxide utilization. Renew Sustain Energy Rev 125:109799CrossRef
20.
go back to reference Hibino T, Mizutani K, Iwahara H (1993) H/D isotope effect on electrochemical pumps of hydrogen and water vapor using a proton-conductive solid electrolyte. J Electrochem Soc 140:2588CrossRef Hibino T, Mizutani K, Iwahara H (1993) H/D isotope effect on electrochemical pumps of hydrogen and water vapor using a proton-conductive solid electrolyte. J Electrochem Soc 140:2588CrossRef
21.
go back to reference Kawamura Y, Isobe K, Yamanishi T (2007) Mass transfer process of hydrogen via ceramic proton conductor membrane of electrochemical hydrogen pump. Fusion Eng Des 82:113–121CrossRef Kawamura Y, Isobe K, Yamanishi T (2007) Mass transfer process of hydrogen via ceramic proton conductor membrane of electrochemical hydrogen pump. Fusion Eng Des 82:113–121CrossRef
22.
go back to reference Lin K, Chen Q, Gerhardt MR et al (2015) Alkaline quinone flow battery. Science (80-) 349:1529–1532 Lin K, Chen Q, Gerhardt MR et al (2015) Alkaline quinone flow battery. Science (80-) 349:1529–1532
23.
go back to reference Aristidou N, Eames C, Sanchez-Molina I et al (2017) Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat Commun 8:15218CrossRef Aristidou N, Eames C, Sanchez-Molina I et al (2017) Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat Commun 8:15218CrossRef
25.
go back to reference Gundeboina R, Perala V, Muga V (2020) Perovskite material-based photocatalysts. Revolut Perovskite Synth Prop Appl 251–287 Gundeboina R, Perala V, Muga V (2020) Perovskite material-based photocatalysts. Revolut Perovskite Synth Prop Appl 251–287
26.
go back to reference Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 16:2920–2925CrossRef Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 16:2920–2925CrossRef
27.
go back to reference Wang J (2015) Barriers of scaling-up fuel cells: cost, durability and reliability. Energy 80:509–521CrossRef Wang J (2015) Barriers of scaling-up fuel cells: cost, durability and reliability. Energy 80:509–521CrossRef
28.
go back to reference Ioroi T, Siroma Z, Yamazaki S, Yasuda K (2019) Electrocatalysts for PEM fuel cells. Adv Energy Mater 9:1801284CrossRef Ioroi T, Siroma Z, Yamazaki S, Yasuda K (2019) Electrocatalysts for PEM fuel cells. Adv Energy Mater 9:1801284CrossRef
29.
go back to reference Wang Y, Diaz DFR, Chen KS et al (2020) Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater Today 32:178–203CrossRef Wang Y, Diaz DFR, Chen KS et al (2020) Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater Today 32:178–203CrossRef
30.
go back to reference Maystrenko AL, Kushch VI, Pashchenko EA et al (2020) Ceramic armour for armoured vehicles against large-calibre bullets. Probl Mechatroniki Uzbroj lotnictwo, inżynieria bezpieczeństwa 11 Maystrenko AL, Kushch VI, Pashchenko EA et al (2020) Ceramic armour for armoured vehicles against large-calibre bullets. Probl Mechatroniki Uzbroj lotnictwo, inżynieria bezpieczeństwa 11
31.
go back to reference Hart M (2020) Vulnerabilities and challenges of integrating AI into future air force intelligence systems Hart M (2020) Vulnerabilities and challenges of integrating AI into future air force intelligence systems
32.
go back to reference Rizwan M, Aleena S, Shakil M et al (2020) A computational insight of electronic and optical properties of Cd-doped BaZrO3. Chinese J Phys 66:318–326CrossRef Rizwan M, Aleena S, Shakil M et al (2020) A computational insight of electronic and optical properties of Cd-doped BaZrO3. Chinese J Phys 66:318–326CrossRef
33.
go back to reference Al Azar S, Al-Zoubi I, Mousa AA et al (2021) Investigation of electronic, optical and thermoelectric properties of perovskite BaTMO3 (TM = Zr, Hf): First principles calculations. J Alloys Compd 887:161361CrossRef Al Azar S, Al-Zoubi I, Mousa AA et al (2021) Investigation of electronic, optical and thermoelectric properties of perovskite BaTMO3 (TM = Zr, Hf): First principles calculations. J Alloys Compd 887:161361CrossRef
34.
go back to reference Husain J, Anvarullha M, Raghu N et al. DC Conductivity studies on polyethylene oxide/nickel ferrite composites Husain J, Anvarullha M, Raghu N et al. DC Conductivity studies on polyethylene oxide/nickel ferrite composites
35.
go back to reference Sunarso J, Baumann S, Serra JM et al (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRef Sunarso J, Baumann S, Serra JM et al (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRef
36.
go back to reference Gilardi E, Fabbri E, Bi L et al (2017) Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121:9739–9747CrossRef Gilardi E, Fabbri E, Bi L et al (2017) Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121:9739–9747CrossRef
37.
go back to reference Fu C-F, Wu X, Yang J (2018) Material design for photocatalytic water splitting from a theoretical perspective. Adv Mater 30:1802106CrossRef Fu C-F, Wu X, Yang J (2018) Material design for photocatalytic water splitting from a theoretical perspective. Adv Mater 30:1802106CrossRef
38.
go back to reference Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44:540–577CrossRef Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44:540–577CrossRef
39.
go back to reference Lin L, Hisatomi T, Chen S et al (2020) Visible-light-driven photocatalytic water splitting: recent progress and challenges. Trends Chem 2:813–824CrossRef Lin L, Hisatomi T, Chen S et al (2020) Visible-light-driven photocatalytic water splitting: recent progress and challenges. Trends Chem 2:813–824CrossRef
40.
go back to reference Cao S, Piao L (2020) Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew Chem Int Ed 59:18312–18320CrossRef Cao S, Piao L (2020) Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew Chem Int Ed 59:18312–18320CrossRef
41.
go back to reference Yuan Y, Zhang X, Liu L et al (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrogen Energy 33:5941–5946CrossRef Yuan Y, Zhang X, Liu L et al (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrogen Energy 33:5941–5946CrossRef
42.
go back to reference Jun A, Ju Y-W, Kim G (2015) Solid oxide electrolysis: concluding remarks. Faraday Discuss 182:519–528CrossRef Jun A, Ju Y-W, Kim G (2015) Solid oxide electrolysis: concluding remarks. Faraday Discuss 182:519–528CrossRef
43.
go back to reference Jun A, Kim J, Shin J, Kim G (2016) Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite. Angew Chem Int Ed 55:12512–12515CrossRef Jun A, Kim J, Shin J, Kim G (2016) Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite. Angew Chem Int Ed 55:12512–12515CrossRef
44.
go back to reference Luo M, Lu P, Yao W et al (2016) Shape and composition effects on photocatalytic hydrogen production for Pt–Pd alloy cocatalysts. ACS Appl Mater Interfaces 8:20667–20674CrossRef Luo M, Lu P, Yao W et al (2016) Shape and composition effects on photocatalytic hydrogen production for Pt–Pd alloy cocatalysts. ACS Appl Mater Interfaces 8:20667–20674CrossRef
45.
go back to reference Qin J, Zeng H (2017) Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl Catal B Environ 209:161–173CrossRef Qin J, Zeng H (2017) Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl Catal B Environ 209:161–173CrossRef
46.
go back to reference Rather RA, Singh S, Pal B (2017) AC3N4 surface passivated highly photoactive Au-TiO2 tubular nanostructure for the efficient H2 production from water under sunlight irradiation. Appl Catal B Environ 213:9–17CrossRef Rather RA, Singh S, Pal B (2017) AC3N4 surface passivated highly photoactive Au-TiO2 tubular nanostructure for the efficient H2 production from water under sunlight irradiation. Appl Catal B Environ 213:9–17CrossRef
47.
go back to reference Kumar N (2016) Bulletproof vest and its improvement–a review. Int J Sci Dev Res 1:34–39 Kumar N (2016) Bulletproof vest and its improvement–a review. Int J Sci Dev Res 1:34–39
48.
go back to reference Samir NS, Radwan MA, Sadek MA, Elazab HA (2018) Preparation and characterization of bullet-proof vests based on polyamide fibers. Int J Eng Technol 7:1290–1294CrossRef Samir NS, Radwan MA, Sadek MA, Elazab HA (2018) Preparation and characterization of bullet-proof vests based on polyamide fibers. Int J Eng Technol 7:1290–1294CrossRef
49.
go back to reference Tepeduzu B, Karakuzu R (2019) Ballistic performance of ceramic/composite structures. Ceram Int 45:1651–1660CrossRef Tepeduzu B, Karakuzu R (2019) Ballistic performance of ceramic/composite structures. Ceram Int 45:1651–1660CrossRef
50.
go back to reference Nurazzi NM, Asyraf MRM, Khalina A et al (2021) A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers (Basel) 13:646CrossRef Nurazzi NM, Asyraf MRM, Khalina A et al (2021) A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers (Basel) 13:646CrossRef
51.
go back to reference Reddy PRS, Savio SG, Madhu V (2020) Ceramic composite armour for ballistic protection. Handbook of advanced ceramics and composites: defense, security, aerospace and energy applications, pp 357–402 Reddy PRS, Savio SG, Madhu V (2020) Ceramic composite armour for ballistic protection. Handbook of advanced ceramics and composites: defense, security, aerospace and energy applications, pp 357–402
52.
go back to reference Zhang J, Liu Z, Zhang T et al (2021) High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics. J Mater Sci Mater Electron 32:16715–16725CrossRef Zhang J, Liu Z, Zhang T et al (2021) High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics. J Mater Sci Mater Electron 32:16715–16725CrossRef
53.
go back to reference Li F, Wu S, Li T et al (2020) Normal-relaxor ferroelectric phase transition induced morphotropic phase boundary accompanied by enhanced piezoelectric and electrostrain properties in strontium modulated Bi0.5K0.5TiO3 lead-free ceramics. J Eur Ceram Soc 40:3918–3927CrossRef Li F, Wu S, Li T et al (2020) Normal-relaxor ferroelectric phase transition induced morphotropic phase boundary accompanied by enhanced piezoelectric and electrostrain properties in strontium modulated Bi0.5K0.5TiO3 lead-free ceramics. J Eur Ceram Soc 40:3918–3927CrossRef
54.
go back to reference Yin Y, Tang Y, Pan W et al (2021) Relaxor behaviors enhance piezoelectricity in lead-free BiFeO3-BaTiO3 ceramics incorporated with a tiny amount of Bi(Mg1/2Ti1/2)O3 near the morphotropic phase boundary. Ceram Int 47:9486–9494CrossRef Yin Y, Tang Y, Pan W et al (2021) Relaxor behaviors enhance piezoelectricity in lead-free BiFeO3-BaTiO3 ceramics incorporated with a tiny amount of Bi(Mg1/2Ti1/2)O3 near the morphotropic phase boundary. Ceram Int 47:9486–9494CrossRef
55.
go back to reference Wu L, Zheng T, Wu J (2022) Excellent fatigue resistance in Sb nonstoichiometric KNN-based ceramics by engineering relaxor multiphase state. J Eur Ceram Soc 42:4888–4897CrossRef Wu L, Zheng T, Wu J (2022) Excellent fatigue resistance in Sb nonstoichiometric KNN-based ceramics by engineering relaxor multiphase state. J Eur Ceram Soc 42:4888–4897CrossRef
56.
go back to reference Singh K, Kannan R, Thangadurai V (2019) Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells. Solid State Ionics 339:114951CrossRef Singh K, Kannan R, Thangadurai V (2019) Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells. Solid State Ionics 339:114951CrossRef
57.
go back to reference Cathcart JV, Perkins RA, Bates JB, Manley LC (1979) Tritium diffusion in rutile (TiO2). J Appl Phys 50:4110–4119CrossRef Cathcart JV, Perkins RA, Bates JB, Manley LC (1979) Tritium diffusion in rutile (TiO2). J Appl Phys 50:4110–4119CrossRef
58.
go back to reference Stotz S, Wagner C (1966) Die löslichkeit von wasserdampf und wasserstoff in festen oxiden. Berichte der Bunsengesellschaft für physikalische Chemie 70:781–788 Stotz S, Wagner C (1966) Die löslichkeit von wasserdampf und wasserstoff in festen oxiden. Berichte der Bunsengesellschaft für physikalische Chemie 70:781–788
59.
go back to reference Zhang Z, Chen L, Li Q et al (2018) High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells. Solid State Ionics 323:25–31CrossRef Zhang Z, Chen L, Li Q et al (2018) High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells. Solid State Ionics 323:25–31CrossRef
60.
go back to reference Yokokawa H (2009) Overview of intermediate-temperature solid oxide fuel cells. Perovskite oxide solid oxide fuel cells, pp 17–43 Yokokawa H (2009) Overview of intermediate-temperature solid oxide fuel cells. Perovskite oxide solid oxide fuel cells, pp 17–43
61.
go back to reference Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. Renew Sustain Energy Rev 20:430–442CrossRef Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. Renew Sustain Energy Rev 20:430–442CrossRef
62.
go back to reference Tarragó DP, Moreno B, Chinarro Martín E, de Sousa VC (2016) Perovskites used in fuel cells. Pan L, Zhu G (eds) Perovskite Materials: synthesis, characterisation, properties, and applications [recurso eletrônico] [Rijeka, Croatia], chap 21. InTech, pp 619–637 Tarragó DP, Moreno B, Chinarro Martín E, de Sousa VC (2016) Perovskites used in fuel cells. Pan L, Zhu G (eds) Perovskite Materials: synthesis, characterisation, properties, and applications [recurso eletrônico] [Rijeka, Croatia], chap 21. InTech, pp 619–637
63.
go back to reference Chambi‐Rocha A, Cabrera‐Domínguez ME, Domínguez‐Reyes A (2018) Breathing mode influence on craniofacial development and head posture. J Pediatr (Versão em Port) 94:123–130 Chambi‐Rocha A, Cabrera‐Domínguez ME, Domínguez‐Reyes A (2018) Breathing mode influence on craniofacial development and head posture. J Pediatr (Versão em Port) 94:123–130
64.
go back to reference Li P, Yang W, Tian C et al (2021) Electrochemical performance of La2NiO4+δ-Ce0.55 La0.45O2−δ as a promising bifunctional oxygen electrode for reversible solid oxide cells. J Adv Ceram 10:328–337CrossRef Li P, Yang W, Tian C et al (2021) Electrochemical performance of La2NiO4+δ-Ce0.55 La0.45O2δ as a promising bifunctional oxygen electrode for reversible solid oxide cells. J Adv Ceram 10:328–337CrossRef
65.
go back to reference Wang W, Medvedev D, Shao Z (2018) Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Adv Funct Mater 28:1802592CrossRef Wang W, Medvedev D, Shao Z (2018) Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Adv Funct Mater 28:1802592CrossRef
66.
go back to reference Horita T, Yokokawa H (2005) Solid oxide fuel cells. In: Materials for energy conversion devices. Elsevier, pp 140–173 Horita T, Yokokawa H (2005) Solid oxide fuel cells. In: Materials for energy conversion devices. Elsevier, pp 140–173
67.
go back to reference Anjaneya KC, Nayaka GP, Manjanna J et al (2013) Preparation and characterization of Ce1−xGdxO2−δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J Alloys Compd 578:53–59CrossRef Anjaneya KC, Nayaka GP, Manjanna J et al (2013) Preparation and characterization of Ce1xGdxO2δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J Alloys Compd 578:53–59CrossRef
68.
go back to reference Steele BCH (1994) Oxygen transport and exchange in oxide ceramics. J Power Sources 49:1–14CrossRef Steele BCH (1994) Oxygen transport and exchange in oxide ceramics. J Power Sources 49:1–14CrossRef
69.
go back to reference Jaiswal N, Tanwar K, Suman R et al (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloys Compd 781:984–1005CrossRef Jaiswal N, Tanwar K, Suman R et al (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloys Compd 781:984–1005CrossRef
70.
go back to reference Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210CrossRef Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210CrossRef
71.
go back to reference Mendonça C, Santos DMF (2021) Towards the commercialization of solid oxide fuel cells: recent advances in materials and integration strategies. Fuels 2:393–419 Mendonça C, Santos DMF (2021) Towards the commercialization of solid oxide fuel cells: recent advances in materials and integration strategies. Fuels 2:393–419
72.
go back to reference Kreuer K-D (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359CrossRef Kreuer K-D (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359CrossRef
73.
go back to reference Fu Y-P, Weng C-S (2014) Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties. Ceram Int 40:10793–10802CrossRef Fu Y-P, Weng C-S (2014) Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties. Ceram Int 40:10793–10802CrossRef
74.
go back to reference Li J, Wang C, Wang X, Bi L (2020) Sintering aids for proton-conducting oxides—a double-edged sword? A mini review. Electrochem Commun 112:106672CrossRef Li J, Wang C, Wang X, Bi L (2020) Sintering aids for proton-conducting oxides—a double-edged sword? A mini review. Electrochem Commun 112:106672CrossRef
75.
go back to reference Tarutin A, Kasyanova A, Lyagaeva J et al (2020) Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes. J Energy Chem 40:65–74CrossRef Tarutin A, Kasyanova A, Lyagaeva J et al (2020) Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes. J Energy Chem 40:65–74CrossRef
76.
go back to reference Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369CrossRef Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369CrossRef
77.
go back to reference Zhang W, Hu YH (2021) Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: from materials to devices. Energy Sci Eng 9:984–1011CrossRef Zhang W, Hu YH (2021) Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: from materials to devices. Energy Sci Eng 9:984–1011CrossRef
78.
go back to reference Meng Y, Gao J, Zhao Z et al (2019) recent progress in low-temperature proton-conducting ceramics. J Mater Sci 54:9291–9312CrossRef Meng Y, Gao J, Zhao Z et al (2019) recent progress in low-temperature proton-conducting ceramics. J Mater Sci 54:9291–9312CrossRef
79.
go back to reference Islam MS, Nolan AM, Wang S et al (2020) A computational study of fast proton diffusion in Brownmillerite Sr2Co2O5. Chem Mater 32:5028–5035CrossRef Islam MS, Nolan AM, Wang S et al (2020) A computational study of fast proton diffusion in Brownmillerite Sr2Co2O5. Chem Mater 32:5028–5035CrossRef
81.
go back to reference Hossain S, Abdalla AM, Jamain SNB et al (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sustain Energy Rev 79:750–764CrossRef Hossain S, Abdalla AM, Jamain SNB et al (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sustain Energy Rev 79:750–764CrossRef
82.
go back to reference Kreuer K-D (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641CrossRef Kreuer K-D (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641CrossRef
83.
go back to reference Vera CYR, Ding H, Peterson D et al (2021) A mini-review on proton conduction of BaZrO3-based perovskite electrolytes. J Phys Energy 3:32019CrossRef Vera CYR, Ding H, Peterson D et al (2021) A mini-review on proton conduction of BaZrO3-based perovskite electrolytes. J Phys Energy 3:32019CrossRef
86.
go back to reference Fischer SA, Gunlycke D (2019) Analysis of correlated dynamics in the Grotthuss mechanism of proton diffusion. J Phys Chem B 123:5536–5544CrossRef Fischer SA, Gunlycke D (2019) Analysis of correlated dynamics in the Grotthuss mechanism of proton diffusion. J Phys Chem B 123:5536–5544CrossRef
88.
go back to reference Papac M, Stevanović V, Zakutayev A, O’Hayre R (2021) Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat Mater 20:301–313CrossRef Papac M, Stevanović V, Zakutayev A, O’Hayre R (2021) Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat Mater 20:301–313CrossRef
89.
go back to reference Li S, Irvine JTS (2021) Non-stoichiometry, structure and properties of proton-conducting perovskite oxides. Solid State Ionics 361:115571CrossRef Li S, Irvine JTS (2021) Non-stoichiometry, structure and properties of proton-conducting perovskite oxides. Solid State Ionics 361:115571CrossRef
91.
go back to reference Zhao C, Li Y, Zhang W et al (2020) Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci 13:53–85CrossRef Zhao C, Li Y, Zhang W et al (2020) Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci 13:53–85CrossRef
92.
go back to reference Tao Z, Yan L, Qiao J et al (2015) A review of advanced proton-conducting materials for hydrogen separation. Prog Mater Sci 74:1–50CrossRef Tao Z, Yan L, Qiao J et al (2015) A review of advanced proton-conducting materials for hydrogen separation. Prog Mater Sci 74:1–50CrossRef
93.
go back to reference Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455CrossRef Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455CrossRef
94.
go back to reference Jamsak W, Assabumrungrat S, Douglas PL et al (2007) Performance of ethanol-fuelled solid oxide fuel cells: proton and oxygen ion conductors. Chem Eng J 133:187–194CrossRef Jamsak W, Assabumrungrat S, Douglas PL et al (2007) Performance of ethanol-fuelled solid oxide fuel cells: proton and oxygen ion conductors. Chem Eng J 133:187–194CrossRef
95.
go back to reference Medvedev D, Murashkina A, Pikalova E et al (2014) BaCeO3: materials development, properties and application. Prog Mater Sci 60:72–129CrossRef Medvedev D, Murashkina A, Pikalova E et al (2014) BaCeO3: materials development, properties and application. Prog Mater Sci 60:72–129CrossRef
96.
go back to reference Lan R, Tao S (2013) Proton-conducting materials as electrolytes for solid oxide fuel cells. Mater High-Temp Fuel Cells 133–158 Lan R, Tao S (2013) Proton-conducting materials as electrolytes for solid oxide fuel cells. Mater High-Temp Fuel Cells 133–158
97.
go back to reference Medvedev DA, Lyagaeva JG, Gorbova EV et al (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79CrossRef Medvedev DA, Lyagaeva JG, Gorbova EV et al (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79CrossRef
98.
go back to reference Liu JF, Nowick AS (1992) The incorporation and migration of protons in Nd-doped BaCeO3. Solid State Ionics 50:131–138CrossRef Liu JF, Nowick AS (1992) The incorporation and migration of protons in Nd-doped BaCeO3. Solid State Ionics 50:131–138CrossRef
99.
go back to reference Saparov B, Mitzi DB (2016) Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev 116:4558–4596CrossRef Saparov B, Mitzi DB (2016) Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev 116:4558–4596CrossRef
100.
go back to reference Gao P, Bin Mohd Yusoff AR, Nazeeruddin MK (2018) Dimensionality engineering of hybrid halide perovskite light absorbers. Nat Commun 9:5028CrossRef Gao P, Bin Mohd Yusoff AR, Nazeeruddin MK (2018) Dimensionality engineering of hybrid halide perovskite light absorbers. Nat Commun 9:5028CrossRef
101.
go back to reference Euvrard J, Yan Y, Mitzi DB (2021) Electrical doping in halide perovskites. Nat Rev Mater 6:531–549CrossRef Euvrard J, Yan Y, Mitzi DB (2021) Electrical doping in halide perovskites. Nat Rev Mater 6:531–549CrossRef
102.
go back to reference Jacobson AJ, Tofield BC, Fender BEF (1972) The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:956–961 Jacobson AJ, Tofield BC, Fender BEF (1972) The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:956–961
103.
go back to reference Yamanaka S, Fujikane M, Hamaguchi T et al (2003) Thermophysical properties of BaZrO3 and BaCeO3. J Alloys Compd 359:109–113CrossRef Yamanaka S, Fujikane M, Hamaguchi T et al (2003) Thermophysical properties of BaZrO3 and BaCeO3. J Alloys Compd 359:109–113CrossRef
104.
go back to reference Matsumoto H, Kawasaki Y, Ito N et al (2007) Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem Solid-State Lett 10:B77CrossRef Matsumoto H, Kawasaki Y, Ito N et al (2007) Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem Solid-State Lett 10:B77CrossRef
105.
go back to reference Münch W, Seifert G, Kreuer KD, Maier J (1996) A quantum molecular dynamics study of proton conduction phenomena in BaCeO3. Solid State Ionics 86:647–652CrossRef Münch W, Seifert G, Kreuer KD, Maier J (1996) A quantum molecular dynamics study of proton conduction phenomena in BaCeO3. Solid State Ionics 86:647–652CrossRef
106.
go back to reference Scherban T, Villeneuve R, Abello L, Lucazeau G (1993) Raman scattering study of acceptor-doped BaCeO3. Solid State Ionics 61:93–98CrossRef Scherban T, Villeneuve R, Abello L, Lucazeau G (1993) Raman scattering study of acceptor-doped BaCeO3. Solid State Ionics 61:93–98CrossRef
107.
go back to reference Zhao F, Chen F (2010) Performance of solid oxide fuel cells based on proton-conducting BaCe0.7In0.3−xYxO3−δ electrolyte. Int J Hydrogen Energy 35:11194–11199CrossRef Zhao F, Chen F (2010) Performance of solid oxide fuel cells based on proton-conducting BaCe0.7In0.3xYxO3δ electrolyte. Int J Hydrogen Energy 35:11194–11199CrossRef
108.
go back to reference Affandi NSM, Zainor ML, Hassan OH et al (2022) Review on the preparation of electrolyte thin films based on cerate-zirconate oxides for electrochemical analysis of anode-supported proton ceramic fuel cells. J Alloys Compd 165434 Affandi NSM, Zainor ML, Hassan OH et al (2022) Review on the preparation of electrolyte thin films based on cerate-zirconate oxides for electrochemical analysis of anode-supported proton ceramic fuel cells. J Alloys Compd 165434
109.
go back to reference Pİşkİn B, Pİşkİn F (2022) Production and characterization of sputtered Y-doped BaZrO3 for proton conducting oxides. JOM 74:4181–4187 Pİşkİn B, Pİşkİn F (2022) Production and characterization of sputtered Y-doped BaZrO3 for proton conducting oxides. JOM 74:4181–4187
110.
go back to reference Baharuddin NA, Abd Rahman H, Samat AA et al (2023) Perovskite-structured ceramics in solid oxide fuel cell application. In: Perovskite ceramics. Elsevier, pp 221–261 Baharuddin NA, Abd Rahman H, Samat AA et al (2023) Perovskite-structured ceramics in solid oxide fuel cell application. In: Perovskite ceramics. Elsevier, pp 221–261
111.
go back to reference Shen H-Z, Guo N, Shen P (2023) Synthesis and densification of BaZrO3 ceramics by reactive cold sintering of Ba(OH)2⋅8H2O-Zr(OH)4 powders. J Eur Ceram Soc 43:392–400CrossRef Shen H-Z, Guo N, Shen P (2023) Synthesis and densification of BaZrO3 ceramics by reactive cold sintering of Ba(OH)2⋅8H2O-Zr(OH)4 powders. J Eur Ceram Soc 43:392–400CrossRef
112.
go back to reference Rizi VS (2019) Ce Pte Us Pt. Mater Res Express 0–12 Rizi VS (2019) Ce Pte Us Pt. Mater Res Express 0–12
113.
go back to reference Jeong Y-C, Kim B-K, Kim Y-C (2014) Proton migration in bulk orthorhombic barium cerate using density functional theory. Solid State Ionics 259:1–8CrossRef Jeong Y-C, Kim B-K, Kim Y-C (2014) Proton migration in bulk orthorhombic barium cerate using density functional theory. Solid State Ionics 259:1–8CrossRef
114.
go back to reference Iguchi F, Tsurui T, Sata N et al (2009) The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics 180:563–568CrossRef Iguchi F, Tsurui T, Sata N et al (2009) The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics 180:563–568CrossRef
115.
go back to reference Makagon E, Merkle R, Maier J, Lubomirsky I (2020) Influence of hydration and dopant ionic radius on the elastic properties of BaZrO3. Solid State Ionics 344:115130CrossRef Makagon E, Merkle R, Maier J, Lubomirsky I (2020) Influence of hydration and dopant ionic radius on the elastic properties of BaZrO3. Solid State Ionics 344:115130CrossRef
116.
go back to reference Yamazaki Y, Blanc F, Okuyama Y et al (2013) Proton trapping in yttrium-doped barium zirconate. Nat Mater 12:647–651CrossRef Yamazaki Y, Blanc F, Okuyama Y et al (2013) Proton trapping in yttrium-doped barium zirconate. Nat Mater 12:647–651CrossRef
117.
go back to reference Draber FM, Ader C, Arnold JP et al (2020) Nanoscale percolation in doped BaZrO3 for high proton mobility. Nat Mater 19:338–346CrossRef Draber FM, Ader C, Arnold JP et al (2020) Nanoscale percolation in doped BaZrO3 for high proton mobility. Nat Mater 19:338–346CrossRef
118.
go back to reference Bork N, Bonanos N, Rossmeisl J, Vegge T (2010) Simple descriptors for proton-conducting perovskites from density functional theory. Phys Rev B 82:14103CrossRef Bork N, Bonanos N, Rossmeisl J, Vegge T (2010) Simple descriptors for proton-conducting perovskites from density functional theory. Phys Rev B 82:14103CrossRef
119.
go back to reference Kochetova N, Animitsa I, Medvedev D et al (2016) Recent activity in the development of proton-conducting oxides for high-temperature applications. Rsc Adv 6:73222–73268CrossRef Kochetova N, Animitsa I, Medvedev D et al (2016) Recent activity in the development of proton-conducting oxides for high-temperature applications. Rsc Adv 6:73222–73268CrossRef
120.
go back to reference Sunarso J, Hashim SS, Zhu N, Zhou W (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog Energy Combust Sci 61:57–77CrossRef Sunarso J, Hashim SS, Zhu N, Zhou W (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog Energy Combust Sci 61:57–77CrossRef
121.
go back to reference Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRef Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRef
122.
go back to reference Zhou Y, Guan X, Zhou H et al (2016) Strongly correlated perovskite fuel cells. Nature 534:231–234CrossRef Zhou Y, Guan X, Zhou H et al (2016) Strongly correlated perovskite fuel cells. Nature 534:231–234CrossRef
123.
go back to reference Levin I, Han M-G, Playford HY et al (2021) Nanoscale-correlated octahedral rotations in BaZrO3. Phys Rev B 104:214109CrossRef Levin I, Han M-G, Playford HY et al (2021) Nanoscale-correlated octahedral rotations in BaZrO3. Phys Rev B 104:214109CrossRef
124.
go back to reference Perrichon A, Jedvik Granhed E, Romanelli G et al (2020) Unraveling the ground-state structure of BaZrO3 by neutron scattering experiments and first-principles calculations. Chem Mater 32:2824–2835CrossRef Perrichon A, Jedvik Granhed E, Romanelli G et al (2020) Unraveling the ground-state structure of BaZrO3 by neutron scattering experiments and first-principles calculations. Chem Mater 32:2824–2835CrossRef
125.
go back to reference Muñoz-García AB, Massaro A, Schiavo E, Pavone M (2020) Tuning perovskite-based oxides for effective electrodes in solid oxide electrochemical cells. In: Solid oxide-based electrochemical devices. Elsevier, pp 1–25 Muñoz-García AB, Massaro A, Schiavo E, Pavone M (2020) Tuning perovskite-based oxides for effective electrodes in solid oxide electrochemical cells. In: Solid oxide-based electrochemical devices. Elsevier, pp 1–25
126.
go back to reference Bartel CJ, Sutton C, Goldsmith BR et al (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv 5:eaav0693 Bartel CJ, Sutton C, Goldsmith BR et al (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv 5:eaav0693
128.
go back to reference Medvedev D, Lyagaeva J, Plaksin S et al (2015) Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. J Power Sources 273:716–723CrossRef Medvedev D, Lyagaeva J, Plaksin S et al (2015) Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. J Power Sources 273:716–723CrossRef
130.
go back to reference Zohourian R, Merkle R, Maier J (2017) Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3−δ and comparison to protonic electrolyte materials. Solid State Ionics 299:64–69CrossRef Zohourian R, Merkle R, Maier J (2017) Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3δ and comparison to protonic electrolyte materials. Solid State Ionics 299:64–69CrossRef
131.
go back to reference Mazzei L, Perrichon A, Mancini A et al (2019) Local structure and vibrational dynamics in indium-doped barium zirconate. J Mater Chem A 7:7360–7372CrossRef Mazzei L, Perrichon A, Mancini A et al (2019) Local structure and vibrational dynamics in indium-doped barium zirconate. J Mater Chem A 7:7360–7372CrossRef
132.
go back to reference Poolphol P, Muanghlua R, Atiwongsangthong N et al (2019) The study of trivalent-dopants effect on electrical properties of the BaZr0.7In0.3O3−δ system. Integr Ferroelectr 195:109–118CrossRef Poolphol P, Muanghlua R, Atiwongsangthong N et al (2019) The study of trivalent-dopants effect on electrical properties of the BaZr0.7In0.3O3δ system. Integr Ferroelectr 195:109–118CrossRef
133.
go back to reference Andreev R, Korona D, Anokhina I, Animitsa I (2022) Proton and oxygen-ion conductivities of hexagonal perovskite Ba5In2Al2ZrO13. Materials (Basel) 15:3944CrossRef Andreev R, Korona D, Anokhina I, Animitsa I (2022) Proton and oxygen-ion conductivities of hexagonal perovskite Ba5In2Al2ZrO13. Materials (Basel) 15:3944CrossRef
134.
go back to reference Hossain MK, Chanda R, El-Denglawey A et al (2021) Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: a review. Ceram Int 47:23725–23748CrossRef Hossain MK, Chanda R, El-Denglawey A et al (2021) Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: a review. Ceram Int 47:23725–23748CrossRef
135.
go back to reference Yang Z-B, Han M-F, Zhu P et al (2011) Ba1−xCo0.9−yFeyNb0.1O3−δ (x = 0–0.15, y = 0–0.9) as cathode materials for solid oxide fuel cells. Int J Hydrogen Energy 36:9162–9168CrossRef Yang Z-B, Han M-F, Zhu P et al (2011) Ba1xCo0.9yFeyNb0.1O3δ (x = 0–0.15, y = 0–0.9) as cathode materials for solid oxide fuel cells. Int J Hydrogen Energy 36:9162–9168CrossRef
136.
go back to reference Yang Z, Liu Y, Zhu T et al (2016) Mechanism analysis of CO2 corrosion on Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode. Int J Hydrogen Energy 41:1997–2001CrossRef Yang Z, Liu Y, Zhu T et al (2016) Mechanism analysis of CO2 corrosion on Ba0.9Co0.7Fe0.2Nb0.1O3δ cathode. Int J Hydrogen Energy 41:1997–2001CrossRef
138.
go back to reference Krug F, Schober T, Springer T (1995) In situ measurements of the water uptake in Yb doped SrCeO3. Solid State Ionics 81:111–118CrossRef Krug F, Schober T, Springer T (1995) In situ measurements of the water uptake in Yb doped SrCeO3. Solid State Ionics 81:111–118CrossRef
139.
go back to reference Han D, Toyoura K, Uda T (2021) Protonated BaZr0.8Y0.2O3−δ: impact of hydration on electrochemical conductivity and local crystal structure. ACS Appl Energy Mater 4:1666–1676CrossRef Han D, Toyoura K, Uda T (2021) Protonated BaZr0.8Y0.2O3δ: impact of hydration on electrochemical conductivity and local crystal structure. ACS Appl Energy Mater 4:1666–1676CrossRef
140.
go back to reference Stevenson DA, Jiang N, Buchanan RM, Henn FEG (1993) Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics 62:279–285CrossRef Stevenson DA, Jiang N, Buchanan RM, Henn FEG (1993) Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics 62:279–285CrossRef
141.
go back to reference Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3:359–363CrossRef Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3:359–363CrossRef
142.
go back to reference Iwahara H, Uchida H, Ono K, Ogaki K (1988) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529 Iwahara H, Uchida H, Ono K, Ogaki K (1988) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529
143.
go back to reference Gu Y-J, Liu Z-G, Ouyang J-H et al (2013) Structure and electrical conductivity of BaCe0.85Ln0.15O3−δ (Ln = Gd, Y, Yb) ceramics. Electrochim Acta 105:547–553CrossRef Gu Y-J, Liu Z-G, Ouyang J-H et al (2013) Structure and electrical conductivity of BaCe0.85Ln0.15O3δ (Ln = Gd, Y, Yb) ceramics. Electrochim Acta 105:547–553CrossRef
144.
go back to reference Medvedev DA, Gorbova EV, Demin AK, Tsiakaras P (2014) Conductivity of Gd-doped BaCeO3 protonic conductor in H2–H2O–O2 atmospheres. Int J Hydrogen Energy 39:21547–21552CrossRef Medvedev DA, Gorbova EV, Demin AK, Tsiakaras P (2014) Conductivity of Gd-doped BaCeO3 protonic conductor in H2–H2O–O2 atmospheres. Int J Hydrogen Energy 39:21547–21552CrossRef
145.
go back to reference Lim D-K, Lee T-R, Singh B et al (2014) Charge and mass transport properties of BaCe0.45Zr0.4Y0.15O3−δ. J Electrochem Soc 161:F710 Lim D-K, Lee T-R, Singh B et al (2014) Charge and mass transport properties of BaCe0.45Zr0.4Y0.15O3−δ. J Electrochem Soc 161:F710
146.
go back to reference Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804–874CrossRef Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804–874CrossRef
147.
go back to reference Haugsrud R (2016) High temperature proton conductors-fundamentals and functionalities. Diffusion Foundations, pp 31–79 Haugsrud R (2016) High temperature proton conductors-fundamentals and functionalities. Diffusion Foundations, pp 31–79
148.
go back to reference Park J-S, Lee J-H, Lee H-W, Kim B-K (2010) Low temperature sintering of BaZrO3-based proton conductors for intermediate temperature solid oxide fuel cells. Solid State Ionics 181:163–167CrossRef Park J-S, Lee J-H, Lee H-W, Kim B-K (2010) Low temperature sintering of BaZrO3-based proton conductors for intermediate temperature solid oxide fuel cells. Solid State Ionics 181:163–167CrossRef
150.
go back to reference Exner J, Nazarenus T, Kita J, Moos R (2020) Dense Y-doped ion conducting perovskite films of BaZrO3, BaSnO3, and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature. Int J Hydrogen Energy 45:10000–10016CrossRef Exner J, Nazarenus T, Kita J, Moos R (2020) Dense Y-doped ion conducting perovskite films of BaZrO3, BaSnO3, and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature. Int J Hydrogen Energy 45:10000–10016CrossRef
151.
go back to reference Fabbri E, Bi L, Tanaka H et al (2011) Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv Funct Mater 21:158–166CrossRef Fabbri E, Bi L, Tanaka H et al (2011) Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv Funct Mater 21:158–166CrossRef
152.
go back to reference Han D, Shinoda K, Sato S et al (2015) Correlation between electroconductive and structural properties of proton conductive acceptor-doped barium zirconate. J Mater Chem A 3:1243–1250CrossRef Han D, Shinoda K, Sato S et al (2015) Correlation between electroconductive and structural properties of proton conductive acceptor-doped barium zirconate. J Mater Chem A 3:1243–1250CrossRef
153.
go back to reference Gonçalves MD, Maram PS, Navrotsky A, Muccillo R (2016) Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes. Ceram Int 42:13689–13696CrossRef Gonçalves MD, Maram PS, Navrotsky A, Muccillo R (2016) Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes. Ceram Int 42:13689–13696CrossRef
154.
go back to reference Zhu Z, Sun W, Shi Z, Liu W (2016) Proton-conducting solid oxide fuel cells with yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures. J Alloys Compd 658:716–720CrossRef Zhu Z, Sun W, Shi Z, Liu W (2016) Proton-conducting solid oxide fuel cells with yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures. J Alloys Compd 658:716–720CrossRef
155.
go back to reference Bi L, Shafi SP, Da’as EH, Traversa E (2018) Tailoring the cathode–electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small 14:1801231 Bi L, Shafi SP, Da’as EH, Traversa E (2018) Tailoring the cathode–electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small 14:1801231
156.
go back to reference Demin AK, Tsiakaras PE, Sobyanin VA, Hramova SY (2002) Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor. Solid State Ionics 152:555–560CrossRef Demin AK, Tsiakaras PE, Sobyanin VA, Hramova SY (2002) Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor. Solid State Ionics 152:555–560CrossRef
157.
go back to reference Assabumrungrat S, Sangtongkitcharoen W, Laosiripojana N et al (2005) Effects of electrolyte type and flow pattern on performance of methanol-fuelled solid oxide fuel cells. J Power Sources 148:18–23CrossRef Assabumrungrat S, Sangtongkitcharoen W, Laosiripojana N et al (2005) Effects of electrolyte type and flow pattern on performance of methanol-fuelled solid oxide fuel cells. J Power Sources 148:18–23CrossRef
158.
go back to reference Sun W, Zhu Z, Shi Z, Liu W (2013) Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3−δ for solid oxide fuel cells. J Power Sources 229:95–101CrossRef Sun W, Zhu Z, Shi Z, Liu W (2013) Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3δ for solid oxide fuel cells. J Power Sources 229:95–101CrossRef
159.
go back to reference Cervera RB, Oyama Y, Miyoshi S et al (2014) Nanograined Sc-doped BaZrO3 as a proton conducting solid electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 264:1–6CrossRef Cervera RB, Oyama Y, Miyoshi S et al (2014) Nanograined Sc-doped BaZrO3 as a proton conducting solid electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 264:1–6CrossRef
160.
go back to reference Yoo Y, Lim N (2013) Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte. J Power Sources 229:48–57CrossRef Yoo Y, Lim N (2013) Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte. J Power Sources 229:48–57CrossRef
162.
go back to reference Zhu Z, Wang S (2019) Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells. Ceram Int 45:19289–19296CrossRef Zhu Z, Wang S (2019) Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells. Ceram Int 45:19289–19296CrossRef
163.
go back to reference Loureiro FJA, Nasani N, Reddy GS et al (2019) A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells. J Power Sources 438:226991CrossRef Loureiro FJA, Nasani N, Reddy GS et al (2019) A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells. J Power Sources 438:226991CrossRef
164.
go back to reference Tao Z, Xu X, Bi L (2021) Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: a mini-review. Electrochem commun 129:107072CrossRef Tao Z, Xu X, Bi L (2021) Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: a mini-review. Electrochem commun 129:107072CrossRef
165.
go back to reference Sonu BK, Sinha E (2021) Structural, thermal stability and electrical conductivity of zirconium substituted barium cerate ceramics. J Alloys Compd 860:158471CrossRef Sonu BK, Sinha E (2021) Structural, thermal stability and electrical conductivity of zirconium substituted barium cerate ceramics. J Alloys Compd 860:158471CrossRef
166.
go back to reference Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168:299–310CrossRef Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168:299–310CrossRef
167.
go back to reference Bévillon É, Hermet J, Dezanneau G, Geneste G (2014) How dopant size influences the protonic energy landscape in BaSn1−xMxO3−x/2 (M= Ga, Sc, In, Y, Gd, La). J Mater Chem A 2:460–471CrossRef Bévillon É, Hermet J, Dezanneau G, Geneste G (2014) How dopant size influences the protonic energy landscape in BaSn1xMxO3x/2 (M= Ga, Sc, In, Y, Gd, La). J Mater Chem A 2:460–471CrossRef
168.
go back to reference Shakel Z, Loureiro FJA, Antunes I et al (2022) Tailoring the properties of dense yttrium-doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile. Int J Energy Res 46:21989–22000CrossRef Shakel Z, Loureiro FJA, Antunes I et al (2022) Tailoring the properties of dense yttrium-doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile. Int J Energy Res 46:21989–22000CrossRef
169.
go back to reference Li X, Li Z, Zhu Y (2022) Effect of CoO–NiO additives on the microstructure and mechanical properties of microcrystalline corundum abrasives with in-situ formed needle-shaped LaAl11O18. Ceram Int 48:33794–33800CrossRef Li X, Li Z, Zhu Y (2022) Effect of CoO–NiO additives on the microstructure and mechanical properties of microcrystalline corundum abrasives with in-situ formed needle-shaped LaAl11O18. Ceram Int 48:33794–33800CrossRef
170.
go back to reference Leng Z, Huang Z, Zhou X et al (2022) The effect of sintering aids on BaCe0.7Zr0.1Y0.1Yb0.1O3−δ as the electrolyte of proton-conducting solid oxide electrolysis cells. Int J Hydrogen Energy 47:33861–33871CrossRef Leng Z, Huang Z, Zhou X et al (2022) The effect of sintering aids on BaCe0.7Zr0.1Y0.1Yb0.1O3δ as the electrolyte of proton-conducting solid oxide electrolysis cells. Int J Hydrogen Energy 47:33861–33871CrossRef
171.
go back to reference Babar ZUD, Hanif MB, Gao J-T et al (2022) Sintering behavior of BaCe0.7Zr0.1Y0.2O3−δ electrolyte at 1150° C with the utilization of CuO and Bi2O3 as sintering aids and its electrical performance. Int J Hydrogen Energy 47:7403–7414CrossRef Babar ZUD, Hanif MB, Gao J-T et al (2022) Sintering behavior of BaCe0.7Zr0.1Y0.2O3δ electrolyte at 1150° C with the utilization of CuO and Bi2O3 as sintering aids and its electrical performance. Int J Hydrogen Energy 47:7403–7414CrossRef
172.
go back to reference Lindman A, Helgee EE, Wahnstrom G (2017) Comparison of space-charge formation at grain boundaries in proton-conducting BaZrO3 and BaCeO3. Chem Mater 29:7931–7941CrossRef Lindman A, Helgee EE, Wahnstrom G (2017) Comparison of space-charge formation at grain boundaries in proton-conducting BaZrO3 and BaCeO3. Chem Mater 29:7931–7941CrossRef
173.
go back to reference Polfus JM, Pishahang M, Bredesen R (2018) Influence of Ce3+ polarons on grain boundary space-charge in proton conducting Y-doped BaCeO3. Phys Chem Chem Phys 20:16209–16215CrossRef Polfus JM, Pishahang M, Bredesen R (2018) Influence of Ce3+ polarons on grain boundary space-charge in proton conducting Y-doped BaCeO3. Phys Chem Chem Phys 20:16209–16215CrossRef
174.
go back to reference Somekawa T, Matsuzaki Y, Sugahara M et al (2017) Physicochemical properties of Ba(Zr, Ce)O3−δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance. Int J Hydrogen Energy 42:16722–16730CrossRef Somekawa T, Matsuzaki Y, Sugahara M et al (2017) Physicochemical properties of Ba(Zr, Ce)O3δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance. Int J Hydrogen Energy 42:16722–16730CrossRef
175.
go back to reference Pasierb P, Wierzbicka M, Komornicki S, Rekas M (2009) Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. J Power Sources 194:31–37CrossRef Pasierb P, Wierzbicka M, Komornicki S, Rekas M (2009) Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. J Power Sources 194:31–37CrossRef
176.
go back to reference De Souza RA, Dickey EC (2019) The effect of space-charge formation on the grain-boundary energy of an ionic solid. Philos Trans R Soc A 377:20180430CrossRef De Souza RA, Dickey EC (2019) The effect of space-charge formation on the grain-boundary energy of an ionic solid. Philos Trans R Soc A 377:20180430CrossRef
177.
go back to reference Nasani N, Shakel Z, Loureiro FJA et al (2021) Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3−δ electrolyte for protonic ceramic fuel cells. J Alloys Compd 862:158640 Nasani N, Shakel Z, Loureiro FJA et al (2021) Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3−δ electrolyte for protonic ceramic fuel cells. J Alloys Compd 862:158640
178.
go back to reference Kim H-W, Seo J, Yu JH et al (2021) Effect of cerium on yttrium-doped barium zirconate with a ZnO sintering aid: grain and grain boundary protonic conduction. Ceram Int 47:32720–32726CrossRef Kim H-W, Seo J, Yu JH et al (2021) Effect of cerium on yttrium-doped barium zirconate with a ZnO sintering aid: grain and grain boundary protonic conduction. Ceram Int 47:32720–32726CrossRef
179.
go back to reference Hudish G, Manerbino A, Coors WG, Ricote S (2018) Chemical expansion in BaZr0.9−xCexY0.1O3−δ (x = 0 and 0.2) upon hydration determined by high-temperature X-ray diffraction. J Am Ceram Soc 101:1298–1309CrossRef Hudish G, Manerbino A, Coors WG, Ricote S (2018) Chemical expansion in BaZr0.9xCexY0.1O3δ (x = 0 and 0.2) upon hydration determined by high-temperature X-ray diffraction. J Am Ceram Soc 101:1298–1309CrossRef
180.
go back to reference Tarancón A, Skinner SJ, Chater RJ et al (2007) Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 17:3175–3181CrossRef Tarancón A, Skinner SJ, Chater RJ et al (2007) Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 17:3175–3181CrossRef
181.
go back to reference Choi S, Yoo S, Kim J et al (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci Rep 3:2426 Choi S, Yoo S, Kim J et al (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci Rep 3:2426
182.
go back to reference Haile SM (2003) Fuel cell materials and components. Acta Mater 51:5981–6000CrossRef Haile SM (2003) Fuel cell materials and components. Acta Mater 51:5981–6000CrossRef
183.
go back to reference Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 80(334):935–939CrossRef Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 80(334):935–939CrossRef
184.
go back to reference Zhao Y, Xia C, Jia L et al (2013) Recent progress on solid oxide fuel cell: lowering temperature and utilizing non-hydrogen fuels. Int J Hydrogen Energy 38:16498–16517CrossRef Zhao Y, Xia C, Jia L et al (2013) Recent progress on solid oxide fuel cell: lowering temperature and utilizing non-hydrogen fuels. Int J Hydrogen Energy 38:16498–16517CrossRef
185.
go back to reference Kim J, Choi S, Jun A et al (2014) Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Chemsuschem 7:1669–1675CrossRef Kim J, Choi S, Jun A et al (2014) Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O3δ. Chemsuschem 7:1669–1675CrossRef
186.
go back to reference Bohn HG, Schober T (2000) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83:768–772CrossRef Bohn HG, Schober T (2000) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83:768–772CrossRef
187.
go back to reference Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ionics 181:1043–1051CrossRef Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1xYxO3δ fuel cell electrolytes? Solid State Ionics 181:1043–1051CrossRef
189.
go back to reference Shao Z, Tadé MO (2016) Intermediate-temperature solid oxide fuel cells. Chem Soc Rev 37:1568 Shao Z, Tadé MO (2016) Intermediate-temperature solid oxide fuel cells. Chem Soc Rev 37:1568
190.
go back to reference Da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrogen Energy 42:26020–26036CrossRef Da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrogen Energy 42:26020–26036CrossRef
191.
go back to reference Abdalla AM, Hossain S, Azad AT et al (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368CrossRef Abdalla AM, Hossain S, Azad AT et al (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368CrossRef
192.
go back to reference Wang F, Lyu Y, Chu D et al (2019) The electrolyte materials for SOFCs of low-intermediate temperature. Mater Sci Technol 35:1551–1562CrossRef Wang F, Lyu Y, Chu D et al (2019) The electrolyte materials for SOFCs of low-intermediate temperature. Mater Sci Technol 35:1551–1562CrossRef
193.
go back to reference Boldrin P, Brandon NP (2019) Progress and outlook for solid oxide fuel cells for transportation applications. Nat Catal 2:571–577CrossRef Boldrin P, Brandon NP (2019) Progress and outlook for solid oxide fuel cells for transportation applications. Nat Catal 2:571–577CrossRef
194.
go back to reference Pikalova EY, Kalinina EG (2021) Approaches to improving efficiency of solid oxide fuel cells based on ceramic membranes with mixed conductivity. Russ Chem Rev 90 Pikalova EY, Kalinina EG (2021) Approaches to improving efficiency of solid oxide fuel cells based on ceramic membranes with mixed conductivity. Russ Chem Rev 90
195.
go back to reference Prakash BS, Pavitra R, Kumar SS, Aruna ST (2018) Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: a review. J Power Sources 381:136–155CrossRef Prakash BS, Pavitra R, Kumar SS, Aruna ST (2018) Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: a review. J Power Sources 381:136–155CrossRef
196.
go back to reference Kalinina E, Pikalova E, Ermakova L, Bogdanovich N (2021) Challenges of formation of thin-film solid electrolyte layers on non-conductive substrates by electrophoretic deposition. Coatings 11:805CrossRef Kalinina E, Pikalova E, Ermakova L, Bogdanovich N (2021) Challenges of formation of thin-film solid electrolyte layers on non-conductive substrates by electrophoretic deposition. Coatings 11:805CrossRef
198.
go back to reference Lian Y, Zheng M (2020) Investigation of the electrochemical performance of anode-supported SOFCs under steady-state conditions. Int J Electrochem Sci 15:12475–12490CrossRef Lian Y, Zheng M (2020) Investigation of the electrochemical performance of anode-supported SOFCs under steady-state conditions. Int J Electrochem Sci 15:12475–12490CrossRef
199.
go back to reference Park B-K, Barnett SA (2020) Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration. J Mater Chem A 8:11626–11631CrossRef Park B-K, Barnett SA (2020) Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration. J Mater Chem A 8:11626–11631CrossRef
200.
go back to reference Norman NW, Somalu MR, Muchtar A (2018) A short review on the proton conducting electrolytes for solid oxide fuel cell applications. Akademia Baru 2:115–122 Norman NW, Somalu MR, Muchtar A (2018) A short review on the proton conducting electrolytes for solid oxide fuel cell applications. Akademia Baru 2:115–122
201.
go back to reference Sažinas R, Bernuy-López C, Einarsrud M-A, Grande T (2016) Effect of CO2 exposure on the chemical stability and mechanical properties of BaZrO3-ceramics. J Am Ceram Soc 99:3685–3695CrossRef Sažinas R, Bernuy-López C, Einarsrud M-A, Grande T (2016) Effect of CO2 exposure on the chemical stability and mechanical properties of BaZrO3-ceramics. J Am Ceram Soc 99:3685–3695CrossRef
202.
go back to reference Polfus JM, Yildiz B, Tuller HL, Bredesen R (2018) Adsorption of CO2 and facile carbonate formation on BaZrO3 surfaces. J Phys Chem C 122:307–314CrossRef Polfus JM, Yildiz B, Tuller HL, Bredesen R (2018) Adsorption of CO2 and facile carbonate formation on BaZrO3 surfaces. J Phys Chem C 122:307–314CrossRef
203.
go back to reference Kim D-H, Kim B-K, Kim Y-C (2012) Energy barriers for proton migration in yttrium-doped barium zirconate super cell with $Σ$5 (310)/[001] tilt grain boundary. Solid State Ionics 213:18–21CrossRef Kim D-H, Kim B-K, Kim Y-C (2012) Energy barriers for proton migration in yttrium-doped barium zirconate super cell with $Σ$5 (310)/[001] tilt grain boundary. Solid State Ionics 213:18–21CrossRef
205.
go back to reference Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803CrossRef Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803CrossRef
206.
go back to reference Xi X, Abe H, Kuruma K et al (2014) Novel Co-precipitation method to synthesize NiO–YSZ nanocomposite powder for solid oxide fuel cell. Adv Powder Technol 25:490–494CrossRef Xi X, Abe H, Kuruma K et al (2014) Novel Co-precipitation method to synthesize NiO–YSZ nanocomposite powder for solid oxide fuel cell. Adv Powder Technol 25:490–494CrossRef
207.
go back to reference Yang W-D, Chang Y-H, Huang S-H (2005) Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process. J Eur Ceram Soc 25:3611–3618CrossRef Yang W-D, Chang Y-H, Huang S-H (2005) Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process. J Eur Ceram Soc 25:3611–3618CrossRef
208.
go back to reference Li P, Li F, Deng G et al (2016) Polymerized-complex method for preparation of supported bimetallic alloy and monometallic nanoparticles. Chem Commun 52:2996–2999CrossRef Li P, Li F, Deng G et al (2016) Polymerized-complex method for preparation of supported bimetallic alloy and monometallic nanoparticles. Chem Commun 52:2996–2999CrossRef
209.
go back to reference Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE (WO4) 2 (RE = Gd and Yb). J Sol-Gel Sci Technol 42:79–88 Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE (WO4) 2 (RE = Gd and Yb). J Sol-Gel Sci Technol 42:79–88
210.
go back to reference Gao D, Guo R (2010) Yttrium-doped barium zirconate powders synthesized by the gel-casting method. J Am Ceram Soc 93:1572–1575 Gao D, Guo R (2010) Yttrium-doped barium zirconate powders synthesized by the gel-casting method. J Am Ceram Soc 93:1572–1575
211.
go back to reference Abdullah NA, Osman N, Hasan S, Hassan OH (2012) Chelating agents role on thermal characteristics and phase formation of modified cerate-zirconate via sol-gel synthesis route. Int J Electrochem Sci 7:9401–9409CrossRef Abdullah NA, Osman N, Hasan S, Hassan OH (2012) Chelating agents role on thermal characteristics and phase formation of modified cerate-zirconate via sol-gel synthesis route. Int J Electrochem Sci 7:9401–9409CrossRef
212.
go back to reference Zhao H (2015) Research on impact of BaZr0.1Ce0.7Y0.2O3−δ electrolyte doped with a small amount of Al2O3 on the proton conducting solid oxide fuel cell. In: 5th international conference on information engineering for mechanics and materials, pp 1694–1700 Zhao H (2015) Research on impact of BaZr0.1Ce0.7Y0.2O3−δ electrolyte doped with a small amount of Al2O3 on the proton conducting solid oxide fuel cell. In: 5th international conference on information engineering for mechanics and materials, pp 1694–1700
213.
go back to reference Sabry F (2022) Multi function structure: future air force systems will become integrated into multi-function material airframes with embedded sensor, and network components. One Billion Knowledgeable Sabry F (2022) Multi function structure: future air force systems will become integrated into multi-function material airframes with embedded sensor, and network components. One Billion Knowledgeable
214.
go back to reference Kato K, Han D, Uda T (2019) Transport properties of proton conductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3 Kato K, Han D, Uda T (2019) Transport properties of proton conductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3
216.
go back to reference Zhu B, Yang XT, Xu J et al (2003) Innovative low temperature SOFCs and advanced materials. J Power Sources 118:47–53CrossRef Zhu B, Yang XT, Xu J et al (2003) Innovative low temperature SOFCs and advanced materials. J Power Sources 118:47–53CrossRef
217.
go back to reference Huang J, Gao Z, Mao Z (2010) Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrogen Energy 35:4270–4275CrossRef Huang J, Gao Z, Mao Z (2010) Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrogen Energy 35:4270–4275CrossRef
219.
go back to reference Laali KK, Greves WJ, Correa-Smits SJ et al (2018) Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: synthesis, structural studies, computational/docking and in-vitro bioassay. J Fluor Chem 206:82–98CrossRef Laali KK, Greves WJ, Correa-Smits SJ et al (2018) Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: synthesis, structural studies, computational/docking and in-vitro bioassay. J Fluor Chem 206:82–98CrossRef
220.
go back to reference Xu X, Bi L, Zhao XS (2018) Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells. J Membr Sci 558:17–25CrossRef Xu X, Bi L, Zhao XS (2018) Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells. J Membr Sci 558:17–25CrossRef
222.
go back to reference Duval SBC, Holtappels P, Vogt UF, Pomjakushina E, Conder K, Stimming U, Graule T (2007) Solid State Ionics 178:1437 Duval SBC, Holtappels P, Vogt UF, Pomjakushina E, Conder K, Stimming U, Graule T (2007) Solid State Ionics 178:1437
223.
go back to reference Liang F, Yang J, Zhao Y et al (2022) A review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cells. Int J Hydrogen Energy Liang F, Yang J, Zhao Y et al (2022) A review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cells. Int J Hydrogen Energy
224.
go back to reference Pergolesi D, Fabbri E, Traversa E (2010) Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem commun 12:977–980CrossRef Pergolesi D, Fabbri E, Traversa E (2010) Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem commun 12:977–980CrossRef
225.
go back to reference Bae K, Jang DY, Choi HJ et al (2017) Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat Commun 8:14553CrossRef Bae K, Jang DY, Choi HJ et al (2017) Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat Commun 8:14553CrossRef
226.
go back to reference Fluri A, Marcolongo A, Roddatis V et al (2017) Enhanced proton conductivity in Y-doped BaZrO3 via strain engineering. Adv Sci 4:1700467CrossRef Fluri A, Marcolongo A, Roddatis V et al (2017) Enhanced proton conductivity in Y-doped BaZrO3 via strain engineering. Adv Sci 4:1700467CrossRef
227.
go back to reference Campos Covarrubias MS, Sriubas M, Bockute K et al (2020) Properties of barium cerate thin films formed using E-beam deposition. Crystals 10:1152CrossRef Campos Covarrubias MS, Sriubas M, Bockute K et al (2020) Properties of barium cerate thin films formed using E-beam deposition. Crystals 10:1152CrossRef
228.
go back to reference Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 80(295):469–472CrossRef Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 80(295):469–472CrossRef
229.
go back to reference Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRef Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRef
230.
go back to reference Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRef Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRef
231.
go back to reference Lim D-W, Kitagawa H (2021) Rational strategies for proton-conductive metal–organic frameworks. Chem Soc Rev 50:6349–6368CrossRef Lim D-W, Kitagawa H (2021) Rational strategies for proton-conductive metal–organic frameworks. Chem Soc Rev 50:6349–6368CrossRef
232.
go back to reference Yu S, Wang Y, Bi L (2022) Tailoring BaCe0.8Y0.2O3−δ proton-conducting oxide with U ions for an enhanced stability. Ceram Int 48:17987–17993CrossRef Yu S, Wang Y, Bi L (2022) Tailoring BaCe0.8Y0.2O3δ proton-conducting oxide with U ions for an enhanced stability. Ceram Int 48:17987–17993CrossRef
233.
go back to reference Li J, Yu S, Bi L (2022) Sr-doped BaZr0.5Fe0.5O3−δ cathode with improved chemical stability and higher performance for proton-conducting solid oxide fuel cells. Ceram Int 48:35642–35648CrossRef Li J, Yu S, Bi L (2022) Sr-doped BaZr0.5Fe0.5O3δ cathode with improved chemical stability and higher performance for proton-conducting solid oxide fuel cells. Ceram Int 48:35642–35648CrossRef
235.
go back to reference Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932CrossRef Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932CrossRef
236.
go back to reference Gascon J, Corma A, Kapteijn F, Xamena FX (2014) Metal organic framework catalysis: Quo vadis? Acs Catal 4:361–378 Gascon J, Corma A, Kapteijn F, Xamena FX (2014) Metal organic framework catalysis: Quo vadis? Acs Catal 4:361–378
237.
go back to reference Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3:eaap9252 Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3:eaap9252
238.
go back to reference Wang Y, Zhao D (2017) Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation. Cryst Growth Des 17:2291–2308CrossRef Wang Y, Zhao D (2017) Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation. Cryst Growth Des 17:2291–2308CrossRef
239.
go back to reference Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Metal–organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176CrossRef Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Metal–organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176CrossRef
240.
go back to reference Chandra S, Kundu T, Kandambeth S et al (2014) Phosphoric acid loaded azo (-N=N-) based covalent organic framework for proton conduction. J Am Chem Soc 136:6570–6573CrossRef Chandra S, Kundu T, Kandambeth S et al (2014) Phosphoric acid loaded azo (-N=N-) based covalent organic framework for proton conduction. J Am Chem Soc 136:6570–6573CrossRef
241.
go back to reference Yin Y, Li Z, Yang X et al (2016) Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J Power Sources 332:265–273CrossRef Yin Y, Li Z, Yang X et al (2016) Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J Power Sources 332:265–273CrossRef
242.
go back to reference Yang F, Xu G, Dou Y et al (2017) A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2:877–883CrossRef Yang F, Xu G, Dou Y et al (2017) A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2:877–883CrossRef
243.
go back to reference Meng Z, Aykanat A, Mirica KA (2018) Proton conduction in 2D aza-fused covalent organic frameworks. Chem Mater 31:819–825CrossRef Meng Z, Aykanat A, Mirica KA (2018) Proton conduction in 2D aza-fused covalent organic frameworks. Chem Mater 31:819–825CrossRef
244.
go back to reference Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912CrossRef Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912CrossRef
245.
go back to reference Waller PJ, Gándara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48:3053–3063CrossRef Waller PJ, Gándara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48:3053–3063CrossRef
246.
go back to reference Rodríguez-San-Miguel D, Zamora F (2019) Processing of covalent organic frameworks: an ingredient for a material to succeed. Chem Soc Rev 48:4375–4386 Rodríguez-San-Miguel D, Zamora F (2019) Processing of covalent organic frameworks: an ingredient for a material to succeed. Chem Soc Rev 48:4375–4386
247.
go back to reference Nie H, Schauser NS, Dolinski ND et al (2020) Light-controllable ionic conductivity in a polymeric ionic liquid. Angew Chemie 132:5161–5166CrossRef Nie H, Schauser NS, Dolinski ND et al (2020) Light-controllable ionic conductivity in a polymeric ionic liquid. Angew Chemie 132:5161–5166CrossRef
248.
go back to reference Chen X, Addicoat M, Irle S et al (2013) Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J Am Chem Soc 135:546–549CrossRef Chen X, Addicoat M, Irle S et al (2013) Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J Am Chem Soc 135:546–549CrossRef
249.
go back to reference Chen X, Addicoat M, Jin E et al (2015) Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J Am Chem Soc 137:3241–3247CrossRef Chen X, Addicoat M, Jin E et al (2015) Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J Am Chem Soc 137:3241–3247CrossRef
251.
go back to reference Bao S-S, Shimizu GKH, Zheng L-M (2019) Proton conductive metal phosphonate frameworks. Coord Chem Rev 378:577–594CrossRef Bao S-S, Shimizu GKH, Zheng L-M (2019) Proton conductive metal phosphonate frameworks. Coord Chem Rev 378:577–594CrossRef
Metadata
Title
Proton Conductors: Physics and Technological Advancements for PC-SOFC
Authors
D. Vignesh
Ela Rout
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3866-7_1