Skip to main content
Top

2020 | OriginalPaper | Chapter

Pullout Capacity of Ground Anchors in Non-homogeneous Cohesive–Frictional Soil

Authors : Soumya Sadhukhan, Paramita Bhattacharya

Published in: Construction in Geotechnical Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anchors are widely applied as the foundation of structures where significant pullout load is expected. Among various kinds of anchors, plate anchors are frequently employed in practice. The vast majority of the previous works have focused on the pullout capacity of the plate anchors either in undrained homogeneous and non-homogeneous clay or in drained homogeneous sand. The present work has studied the holding capacity of a horizontal anchor plate, subjected to pure vertical pull in homogeneous as well as non-homogeneous cohesive–frictional soil for different combinations of (i) normalized cohesion (c0/γB), (ii) soil frictional angle (ϕ), and (iii) normalized increment factor of cohesion below ground level (rc), where c0 represents the cohesion of soil at the ground level, γ represents the soil unit weight, and B represents the width of the plate. The vertical pullout load (Qu) of the horizontal strip anchor plate is computed using lower bound limit analysis, in conjunction with finite element discretization. The results have been exhibited in a non-dimensional form as Qu/c0B. It has been observed that the non-dimensional pullout capacity (Qu/c0B) increases almost linearly with H/B as long as the measure of ϕ is low; whereas, in case of larger values of ϕ, the increment is non-linear. In addition, the non-dimensional pullout capacity Qu/c0B has been observed to increase considerably with an increment in rc. Although lower bound limit analysis is appropriate for associated flow rule materials, the present analysis has been extended considering non-associated flow rule materials for a few cases by utilizing reduced shear strength parameters. The non-dimensional pullout capacity has been observed to reduce slightly in the case of non-associated flow rule materials, especially for higher values of ϕ. Since the lower bound limit analysis gives the conservative estimation of the ultimate load; therefore, the results computed in this analysis can be used safely for the designing purpose.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhattacharya P (2017) Pullout capacity of shallow inclined anchor in anisotropic and nonhomogeneous undrained clay. Geomech Eng 13(5):825–844 Bhattacharya P (2017) Pullout capacity of shallow inclined anchor in anisotropic and nonhomogeneous undrained clay. Geomech Eng 13(5):825–844
go back to reference Bhattacharya P (2018) Undrained uplift capacity of strip plate anchor nearby clayey slope. Geotech Geol Eng 36:1393–1407 Bhattacharya P (2018) Undrained uplift capacity of strip plate anchor nearby clayey slope. Geotech Geol Eng 36:1393–1407
go back to reference Bhattacharya P, Kumar J (2014a) Pullout capacity of inclined plate anchors embedded in sand. Can Geotech J 51(11):1365–1370CrossRef Bhattacharya P, Kumar J (2014a) Pullout capacity of inclined plate anchors embedded in sand. Can Geotech J 51(11):1365–1370CrossRef
go back to reference Bhattacharya P, Kumar J (2014b) Vertical pullout capacity of horizontal anchor plates in the presence of seismic and seepage forces. Geomech Geoeng 9(4):294–302CrossRef Bhattacharya P, Kumar J (2014b) Vertical pullout capacity of horizontal anchor plates in the presence of seismic and seepage forces. Geomech Geoeng 9(4):294–302CrossRef
go back to reference Bhattacharya P, Kumar J (2016) Uplift capacity of anchors in layered sand using finite element limit analysis: formulation and results. Int J Geomech 16(3):04015078CrossRef Bhattacharya P, Kumar J (2016) Uplift capacity of anchors in layered sand using finite element limit analysis: formulation and results. Int J Geomech 16(3):04015078CrossRef
go back to reference Bishop AW (1966) The strength of soils as engineering materials. Géotechnique 16(2):89–128CrossRef Bishop AW (1966) The strength of soils as engineering materials. Géotechnique 16(2):89–128CrossRef
go back to reference Bottero A, Negre R, Pastor J, Turgeman S (1980) Finite element method and limit analysis theory for soil mechanics problems. Comput Methods Appl Mech Eng 22(1):131–149CrossRef Bottero A, Negre R, Pastor J, Turgeman S (1980) Finite element method and limit analysis theory for soil mechanics problems. Comput Methods Appl Mech Eng 22(1):131–149CrossRef
go back to reference Das BM (1978) Model tests for uplift capacity of foundations in clay. Soils Found 18(2):17–24CrossRef Das BM (1978) Model tests for uplift capacity of foundations in clay. Soils Found 18(2):17–24CrossRef
go back to reference Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique 43(3):443–456CrossRef Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique 43(3):443–456CrossRef
go back to reference Giampa JR, Bradshaw AS, Schneider JA (2016) Influence of dilation angle on drained shallow circular anchor uplift capacity. Int J Geomech 17(2):04016056CrossRef Giampa JR, Bradshaw AS, Schneider JA (2016) Influence of dilation angle on drained shallow circular anchor uplift capacity. Int J Geomech 17(2):04016056CrossRef
go back to reference Ilamparuthi K, Muthukrishnaiah K (1999) Anchors in sand bed: delineation of rupture surface. Ocean Eng 26(12):1249–1273CrossRef Ilamparuthi K, Muthukrishnaiah K (1999) Anchors in sand bed: delineation of rupture surface. Ocean Eng 26(12):1249–1273CrossRef
go back to reference Kumar J (1997) Upper bound solution for pullout capacity of anchors on sandy slopes. Int J Numer Anal Meth Geomech 21(7):477–484CrossRef Kumar J (1997) Upper bound solution for pullout capacity of anchors on sandy slopes. Int J Numer Anal Meth Geomech 21(7):477–484CrossRef
go back to reference Merifield RS, Sloan SW (2006) The ultimate pullout capacity of anchors in frictional soil. Can Geotech J 43(8):852–868CrossRef Merifield RS, Sloan SW (2006) The ultimate pullout capacity of anchors in frictional soil. Can Geotech J 43(8):852–868CrossRef
go back to reference Merifield RS, Lyamin AV, Sloan SW (2005) Stability of inclined plate anchors in cohesive soil. J Geotech Geoenvironmental Eng 131(6):792–799CrossRef Merifield RS, Lyamin AV, Sloan SW (2005) Stability of inclined plate anchors in cohesive soil. J Geotech Geoenvironmental Eng 131(6):792–799CrossRef
go back to reference Merifield RS, Sloan SW, Yu HS (2001) Stability of plate anchors in undrained clay. Geotechnique 51(2):141–154CrossRef Merifield RS, Sloan SW, Yu HS (2001) Stability of plate anchors in undrained clay. Geotechnique 51(2):141–154CrossRef
go back to reference Meyerhof GG, Adams J (1968) The ultimate uplift capacity of foundations. Can Geotech J 5(4):225–244CrossRef Meyerhof GG, Adams J (1968) The ultimate uplift capacity of foundations. Can Geotech J 5(4):225–244CrossRef
go back to reference Murray EJ, Geddes JD (1987) Uplift of anchor plates in sand. J Geotech Eng 113(3):202–215CrossRef Murray EJ, Geddes JD (1987) Uplift of anchor plates in sand. J Geotech Eng 113(3):202–215CrossRef
go back to reference Perazzelli P, Anagnostou G (2017) Uplift resistance of strip anchors in cohesive frictional mediums of limited tensile strength. Int J Geomech 17(9):04017042CrossRef Perazzelli P, Anagnostou G (2017) Uplift resistance of strip anchors in cohesive frictional mediums of limited tensile strength. Int J Geomech 17(9):04017042CrossRef
go back to reference Rao KSS, Kumar J (1994) Vertical uplift capacity of horizontal anchors. J Geotech Eng 120(7):1134–1147CrossRef Rao KSS, Kumar J (1994) Vertical uplift capacity of horizontal anchors. J Geotech Eng 120(7):1134–1147CrossRef
go back to reference Rao SN, Prasad YVSN (1992) Uplift capacity of plate anchors in sloped clayey ground. Soils Found 32(4):164–170CrossRef Rao SN, Prasad YVSN (1992) Uplift capacity of plate anchors in sloped clayey ground. Soils Found 32(4):164–170CrossRef
go back to reference Rowe RK, Davis EH (1982a) The behaviour of anchor plates in clay. Geotechnique 32(1):9–23CrossRef Rowe RK, Davis EH (1982a) The behaviour of anchor plates in clay. Geotechnique 32(1):9–23CrossRef
go back to reference Rowe RK, Davis EH (1982b) The behaviour of anchor plates in sand. Géotechnique 32(1):25–41CrossRef Rowe RK, Davis EH (1982b) The behaviour of anchor plates in sand. Géotechnique 32(1):25–41CrossRef
go back to reference Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12(1):61–77CrossRef Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12(1):61–77CrossRef
go back to reference Song Z, Hu Y, Randolph MF (2008) Numerical simulation of vertical pullout of plate anchors in clay. J Geotech Geoenvironmental Eng 134(6):866–875CrossRef Song Z, Hu Y, Randolph MF (2008) Numerical simulation of vertical pullout of plate anchors in clay. J Geotech Geoenvironmental Eng 134(6):866–875CrossRef
go back to reference Vesic AS (1971) Breakout resistance of objects embedded in ocean bottom. J Soil Mech Found Div 97(9):1183–1205 Vesic AS (1971) Breakout resistance of objects embedded in ocean bottom. J Soil Mech Found Div 97(9):1183–1205
go back to reference Wang D, Hu Y, Randolph MF (2010) Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay. J Geotechn Geoenvironmental Eng 136(2):355–365CrossRef Wang D, Hu Y, Randolph MF (2010) Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay. J Geotechn Geoenvironmental Eng 136(2):355–365CrossRef
go back to reference Yu SB, Merifield RS, Lyamin AV, Fu XD, Fu D (2014) Kinematic limit analysis of pullout capacity for plate anchors in sandy slopes. Struct Eng Mech 51(4):565–579CrossRef Yu SB, Merifield RS, Lyamin AV, Fu XD, Fu D (2014) Kinematic limit analysis of pullout capacity for plate anchors in sandy slopes. Struct Eng Mech 51(4):565–579CrossRef
Metadata
Title
Pullout Capacity of Ground Anchors in Non-homogeneous Cohesive–Frictional Soil
Authors
Soumya Sadhukhan
Paramita Bhattacharya
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6090-3_51