Skip to main content
Top
Published in: Journal of Nanoparticle Research 3/2011

01-03-2011 | Brief communication

Pumping power of nanofluids in a flowing system

Authors: Jules L. Routbort, Dileep Singh, Elena V. Timofeeva, Wenhua Yu, David M. France

Published in: Journal of Nanoparticle Research | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Blasius H (1913) Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Forschungsarbeiten des Ingenieurwesens. Heft 131. Verein Deutscher Ingenieure, Berlin Blasius H (1913) Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Forschungsarbeiten des Ingenieurwesens. Heft 131. Verein Deutscher Ingenieure, Berlin
go back to reference Fox R, McDonald A, Pritchard P (2008) Introduction to fluid mechanics, 7th edn. Wiley, New Jersey Fox R, McDonald A, Pritchard P (2008) Introduction to fluid mechanics, 7th edn. Wiley, New Jersey
go back to reference Mouromtseff IE (1942) Water and forced-air cooling of vacuum tubes. Proc Inst Radio Eng 30:190–205 Mouromtseff IE (1942) Water and forced-air cooling of vacuum tubes. Proc Inst Radio Eng 30:190–205
go back to reference Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluid. J Appl Phys 106:014304CrossRef Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluid. J Appl Phys 106:014304CrossRef
go back to reference Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21:215703CrossRef Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21:215703CrossRef
go back to reference Timofeeva E, Yu W, France DM, Singh D, Routbort JL (2011) Base fluid and temperature effects on the heat-transfer characteristics of SiC nanofluids in EG/H2O and H2O. J Applied Physics 109 (in press) Timofeeva E, Yu W, France DM, Singh D, Routbort JL (2011) Base fluid and temperature effects on the heat-transfer characteristics of SiC nanofluids in EG/H2O and H2O. J Applied Physics 109 (in press)
go back to reference Torii S (2010) Turbulent heat transfer behavior of nanofluid in a circular tube heated under constant heat flux. Adv Mech Eng 2010:917612 Torii S (2010) Turbulent heat transfer behavior of nanofluid in a circular tube heated under constant heat flux. Adv Mech Eng 2010:917612
go back to reference Vold RD, Vold MJ (1983) Colloid and interface chemistry. Addison-Wesley, Reading Vold RD, Vold MJ (1983) Colloid and interface chemistry. Addison-Wesley, Reading
go back to reference Williams W, Buongiorno J, Hu L-W (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zironia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transfer 130:042412CrossRef Williams W, Buongiorno J, Hu L-W (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zironia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transfer 130:042412CrossRef
go back to reference Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanfluids. J Heat Transf 125:151–155CrossRef Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanfluids. J Heat Transf 125:151–155CrossRef
go back to reference Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460CrossRef Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460CrossRef
go back to reference Yu W, France DM, Timofeeva EV, Singh D, Routbort JL (2010) Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl Phys Lett 96:213109CrossRef Yu W, France DM, Timofeeva EV, Singh D, Routbort JL (2010) Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl Phys Lett 96:213109CrossRef
Metadata
Title
Pumping power of nanofluids in a flowing system
Authors
Jules L. Routbort
Dileep Singh
Elena V. Timofeeva
Wenhua Yu
David M. France
Publication date
01-03-2011
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 3/2011
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-0197-7

Other articles of this Issue 3/2011

Journal of Nanoparticle Research 3/2011 Go to the issue

Premium Partners