Skip to main content
Top

04-05-2024 | Original Paper

Quantifying uncertainty in free vibration characteristics of nanobeam with one variable first-order shear deformation theory: an analytical investigation

Authors: Subrat Kumar Jena, S. Pradyumna, S. Chakraverty

Published in: Acta Mechanica

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research investigates uncertainty quantification in nanobeam vibration by integrating the one-variable first-order shear deformation beam theory with Eringen’s nonlocal elasticity theory. Material uncertainties associated with mass density and Young’s modulus are represented using triangular fuzzy numbers. The governing equations for vibration are derived employing the von Kármán hypothesis and Hamilton’s principle, leading to closed-form solutions for the simply supported boundary condition through Navier’s method based on the double parametric form. A comparison of the obtained frequency parameters with those in previously published literature demonstrates strong agreement in specific cases. Additionally, a Monte Carlo Simulation Technique (MCST) based on random sampling is utilized to comprehensively assess the natural frequencies of the nanobeam amidst material uncertainties, providing insights into the variability of the system's response. In order to validate the results obtained through the uncertain model, the natural frequencies derived from Navier’s Method in terms of Lower Bound and Upper Bound are rigorously compared with those obtained through MCST. This comparative analysis underscores the efficacy, accuracy, and robustness of the proposed uncertain model in capturing the dynamic behavior of the nanobeam under varying material conditions. The computation of lower and upper bounds of frequency parameters using the double parameter, and graphical outputs demonstrating the sensitivity of the models, is plotted based on the triangular fuzzy number. This uncertainty modeling and the delineation of frequency parameter bounds offer effective tools for engineering structure design and quality optimization in nanobeam applications.
Literature
1.
go back to reference Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5), 944 (1999)CrossRef Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5), 944 (1999)CrossRef
2.
go back to reference Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998)CrossRef Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998)CrossRef
3.
go back to reference He, L., Guo, S., Lei, J., Sha, Z., Liu, Z.: The effect of Stone–Thrower–Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75, 124–132 (2014)CrossRef He, L., Guo, S., Lei, J., Sha, Z., Liu, Z.: The effect of Stone–Thrower–Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75, 124–132 (2014)CrossRef
4.
go back to reference Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 394–432 (1996) Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 394–432 (1996)
5.
go back to reference Hanss, M., Turrin, S.: A fuzzy-based approach to comprehensive modeling and analysis of systems with epistemic uncertainties. Struct. Saf.Saf. 32(6), 433–441 (2010)CrossRef Hanss, M., Turrin, S.: A fuzzy-based approach to comprehensive modeling and analysis of systems with epistemic uncertainties. Struct. Saf.Saf. 32(6), 433–441 (2010)CrossRef
6.
go back to reference Khastan, A., Nieto, J.J., Rodriguez-Lopez, R.: Variation of constant formula for first order fuzzy differential equations. Fuzzy Sets Syst. 177(1), 20–33 (2011)MathSciNetCrossRef Khastan, A., Nieto, J.J., Rodriguez-Lopez, R.: Variation of constant formula for first order fuzzy differential equations. Fuzzy Sets Syst. 177(1), 20–33 (2011)MathSciNetCrossRef
7.
go back to reference Mikaeilvand, N., Khakrangin, S.: Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl.Appl. 21(1), 307–312 (2012)CrossRef Mikaeilvand, N., Khakrangin, S.: Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl.Appl. 21(1), 307–312 (2012)CrossRef
8.
go back to reference Khastan, A., Nieto, J.J., Rodriguez-Lopez, R.: Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability. Inf. Sci. 222, 544–558 (2013)MathSciNetCrossRef Khastan, A., Nieto, J.J., Rodriguez-Lopez, R.: Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability. Inf. Sci. 222, 544–558 (2013)MathSciNetCrossRef
9.
go back to reference Tapaswini, S., Chakraverty, S.: Dynamic response of imprecisely defined beam subject to various loads using Adomian decomposition method. Appl. Soft Comput. 24, 249–263 (2014)CrossRef Tapaswini, S., Chakraverty, S.: Dynamic response of imprecisely defined beam subject to various loads using Adomian decomposition method. Appl. Soft Comput. 24, 249–263 (2014)CrossRef
10.
go back to reference Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)CrossRef Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)CrossRef
11.
go back to reference Gao, W., Wu, D., Song, C., Tin-Loi, F., Li, X.: Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47(7), 643–652 (2011)MathSciNetCrossRef Gao, W., Wu, D., Song, C., Tin-Loi, F., Li, X.: Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47(7), 643–652 (2011)MathSciNetCrossRef
12.
go back to reference Muscolino, G., Sofi, A.: Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab. Eng. Mech. 28, 152–163 (2012)CrossRef Muscolino, G., Sofi, A.: Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab. Eng. Mech. 28, 152–163 (2012)CrossRef
13.
go back to reference Xu, Y., Qian, Y., Chen, J., Song, G.: Stochastic dynamic characteristics of FGM beams with random material properties. Compos. Struct. 133, 585–594 (2015)CrossRef Xu, Y., Qian, Y., Chen, J., Song, G.: Stochastic dynamic characteristics of FGM beams with random material properties. Compos. Struct. 133, 585–594 (2015)CrossRef
14.
go back to reference Liu, H., Lv, Z., Li, Q.: Flexural wave propagation in fluid-conveying carbon nanotubes with system uncertainties. Microfluid. Nanofluid. 21(8), 1–13 (2017)CrossRef Liu, H., Lv, Z., Li, Q.: Flexural wave propagation in fluid-conveying carbon nanotubes with system uncertainties. Microfluid. Nanofluid. 21(8), 1–13 (2017)CrossRef
15.
go back to reference Lv, Z., Liu, H.: Nonlinear bending response of functionally graded nanobeams with material uncertainties. Int. J. Mech. Sci. 134, 123–135 (2017)CrossRef Lv, Z., Liu, H.: Nonlinear bending response of functionally graded nanobeams with material uncertainties. Int. J. Mech. Sci. 134, 123–135 (2017)CrossRef
16.
go back to reference Lv, Z., Liu, H.: Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment. Compos. Struct. 184, 1165–1176 (2018)CrossRef Lv, Z., Liu, H.: Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment. Compos. Struct. 184, 1165–1176 (2018)CrossRef
17.
go back to reference Lv, Z., Liu, H., Li, Q.: Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium. Int. J. Mech. Mater. Des. 14(3), 375–392 (2018)CrossRef Lv, Z., Liu, H., Li, Q.: Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium. Int. J. Mech. Mater. Des. 14(3), 375–392 (2018)CrossRef
18.
go back to reference Liu, H., Lv, Z.: Vibration performance evaluation of smart magneto-electro-elastic nanobeam with consideration of nanomaterial uncertainties. J. Intell. Mater. Syst. Struct. 30(18–19), 2932–2952 (2019)CrossRef Liu, H., Lv, Z.: Vibration performance evaluation of smart magneto-electro-elastic nanobeam with consideration of nanomaterial uncertainties. J. Intell. Mater. Syst. Struct. 30(18–19), 2932–2952 (2019)CrossRef
19.
go back to reference Jena, S.K., Chakraverty, S., Jena, R.M.: Propagation of uncertainty in free vibration of Euler-Bernoulli nanobeam. J. Braz. Soc. Mech. Sci. Eng. 41, 1–18 (2019)CrossRef Jena, S.K., Chakraverty, S., Jena, R.M.: Propagation of uncertainty in free vibration of Euler-Bernoulli nanobeam. J. Braz. Soc. Mech. Sci. Eng. 41, 1–18 (2019)CrossRef
20.
go back to reference Jena, S.K., Chakraverty, S., Jena, R.M.: Stability analysis of Timoshenko nanobeam with material uncertainties using a double-parametric form-based analytical approach and Monte Carlo simulation technique. Eur. Phys. J. Plus 135(7), 536 (2020)CrossRef Jena, S.K., Chakraverty, S., Jena, R.M.: Stability analysis of Timoshenko nanobeam with material uncertainties using a double-parametric form-based analytical approach and Monte Carlo simulation technique. Eur. Phys. J. Plus 135(7), 536 (2020)CrossRef
21.
go back to reference Jena, S.K., Chakraverty, S., Malikan, M.: Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Eng. Comput. 37, 2957–2969 (2021)CrossRef Jena, S.K., Chakraverty, S., Malikan, M.: Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Eng. Comput. 37, 2957–2969 (2021)CrossRef
22.
go back to reference Jena, S.K., Chakraverty, S., Mahesh, V., Harursampath, D., Sedighi, H.M.: Free vibration of functionally graded beam embedded in Winkler-Pasternak elastic foundation with geometrical uncertainties using symmetric Gaussian fuzzy number. Eur. Phys. J. Plus 137(3), 399 (2022)CrossRef Jena, S.K., Chakraverty, S., Mahesh, V., Harursampath, D., Sedighi, H.M.: Free vibration of functionally graded beam embedded in Winkler-Pasternak elastic foundation with geometrical uncertainties using symmetric Gaussian fuzzy number. Eur. Phys. J. Plus 137(3), 399 (2022)CrossRef
23.
go back to reference Hanss, M.: Applied Fuzzy Arithmetic. Springer, Berlin Heidelberg (2005) Hanss, M.: Applied Fuzzy Arithmetic. Springer, Berlin Heidelberg (2005)
24.
go back to reference Chakraverty, S., Tapaswini, S., Behera, D.: Fuzzy Differential Equations and Applications for Engineers and Scientists. CRC Press (2016)CrossRef Chakraverty, S., Tapaswini, S., Behera, D.: Fuzzy Differential Equations and Applications for Engineers and Scientists. CRC Press (2016)CrossRef
25.
go back to reference Chakraverty, S., Jena, R.M., Jena, S.K.: Time-Fractional Order Biological Systems with Uncertain Parameters. Springer, New York (2022) Chakraverty, S., Jena, R.M., Jena, S.K.: Time-Fractional Order Biological Systems with Uncertain Parameters. Springer, New York (2022)
26.
go back to reference Jena, S.K., Chakraverty, S., Malikan, M.: Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach. Eur. Phys. J. Plus 135(2), 1–18 (2020)CrossRef Jena, S.K., Chakraverty, S., Malikan, M.: Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach. Eur. Phys. J. Plus 135(2), 1–18 (2020)CrossRef
27.
go back to reference Malikan, M., Nguyen, V.B., Tornabene, F.: Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng. Sci. Technol. Int. J. 21(4), 778–786 (2018) Malikan, M., Nguyen, V.B., Tornabene, F.: Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng. Sci. Technol. Int. J. 21(4), 778–786 (2018)
28.
go back to reference Malikan, M., Dimitri, R., Tornabene, F.: Transient response of oscillated carbon nanotubes with an internal and external damping. Compos. B Eng. 158, 198–205 (2019)CrossRef Malikan, M., Dimitri, R., Tornabene, F.: Transient response of oscillated carbon nanotubes with an internal and external damping. Compos. B Eng. 158, 198–205 (2019)CrossRef
30.
go back to reference Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)CrossRef Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)CrossRef
31.
go back to reference Akgöz, B., Civalek, Ö.: Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Compos. B Eng. 150, 68–77 (2018)CrossRef Akgöz, B., Civalek, Ö.: Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Compos. B Eng. 150, 68–77 (2018)CrossRef
32.
go back to reference Avcar, M., Hadji, L., Civalek, Ö.: Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory. Compos. Struct. 276, 114564 (2021)CrossRef Avcar, M., Hadji, L., Civalek, Ö.: Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory. Compos. Struct. 276, 114564 (2021)CrossRef
33.
go back to reference Mohamed, N.A., Shanab, R.A., Eltaher, M.A., Abdelrahman, A.A.: Vibration response of viscoelastic perforated higher-order nanobeams rested on an elastic substrate under moving load. Acta Mech. 235, 1–21 (2023)MathSciNet Mohamed, N.A., Shanab, R.A., Eltaher, M.A., Abdelrahman, A.A.: Vibration response of viscoelastic perforated higher-order nanobeams rested on an elastic substrate under moving load. Acta Mech. 235, 1–21 (2023)MathSciNet
34.
go back to reference Siam, O.A., Shanab, R.A., Eltaher, M.A., Mohamed, N.A.: Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method. Adv. Aircr. Spacecr. Sci. 10(3), 257 (2023) Siam, O.A., Shanab, R.A., Eltaher, M.A., Mohamed, N.A.: Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method. Adv. Aircr. Spacecr. Sci. 10(3), 257 (2023)
35.
go back to reference Ladmek, M., Belkacem, A., Houari, M.S.A., Daikh, A.A., Bessaim, A., Belarbi, M.O., Tounsi, A., Khdair, A.I., Eltaher, M.A.: On vibration responses of advanced functionally graded carbon nanotubes reinforced composite nanobeams. J. Nano Res. 80, 49–63 (2023)CrossRef Ladmek, M., Belkacem, A., Houari, M.S.A., Daikh, A.A., Bessaim, A., Belarbi, M.O., Tounsi, A., Khdair, A.I., Eltaher, M.A.: On vibration responses of advanced functionally graded carbon nanotubes reinforced composite nanobeams. J. Nano Res. 80, 49–63 (2023)CrossRef
36.
go back to reference Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load. Mech. Based Des. Struct. Mach. 51(10), 5383–5406 (2023)CrossRef Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load. Mech. Based Des. Struct. Mach. 51(10), 5383–5406 (2023)CrossRef
37.
go back to reference Zhen, Y.X., Wen, S.L., Tang, Y.: Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model. Physica E 105, 116–124 (2019)CrossRef Zhen, Y.X., Wen, S.L., Tang, Y.: Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model. Physica E 105, 116–124 (2019)CrossRef
38.
go back to reference Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105401 (2007)CrossRef Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105401 (2007)CrossRef
Metadata
Title
Quantifying uncertainty in free vibration characteristics of nanobeam with one variable first-order shear deformation theory: an analytical investigation
Authors
Subrat Kumar Jena
S. Pradyumna
S. Chakraverty
Publication date
04-05-2024
Publisher
Springer Vienna
Published in
Acta Mechanica
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-024-03955-6

Premium Partners