Skip to main content
Top
Published in: Cluster Computing 5/2019

04-12-2017

Quantization based wavelet transformation technique for digital image compression with removal of multiple artifacts and noises

Authors: S. Suresh Kumar, H. Mangalam

Published in: Cluster Computing | Special Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Morlet’s wavelet transformation based image compression and decompression (MWT-ICD) technique is proposed in order to enhance the performance of digital and gray scale image compression with higher compression ratio (CR) and to reduce the space complexity. The MWT-ICD technique initially performs preprocessing task to remove multiple artifacts and noises in digital and gray scale images with the application of generalized lapped orthogonal transforms and Wiener filter. This process results in improved quality of digital and gray scale images with higher PSNR for compression. Next, wavelet quantization transformation based image compression algorithm is developed in MWT-ICD Technique using Morlet’s wavelet transformation. Finally, quantized wavelet transformation based image decompression process is carried out in MWT-ICD technique with the objective of obtaining the reconstructed original image. The performance of MWT-ICD technique is measured in terms of CR, compression time (CT), and space complexity (SC), peak signal to noise ratio (PSNR) and compared with four existing methods. The experimental results show that the MWT-ICD technique is able to acquire higher CR and also reduced space complexity when compared to existing DCT-based image compression system based on Laplacian transparent composite model and multi-wavelet based compressed sensing technique

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sun, C., Yang, E.-H.: Efficient DCT-based image compression system based on Laplacian transparent composite model. IEEE Trans. Image Process. 24(3), 886–900 (2015)MathSciNetMATHCrossRef Sun, C., Yang, E.-H.: Efficient DCT-based image compression system based on Laplacian transparent composite model. IEEE Trans. Image Process. 24(3), 886–900 (2015)MathSciNetMATHCrossRef
2.
go back to reference Qureshi, M.A., Deriche, M.: A new wavelet based efficient image compression algorithm using compressive sensing. Multimed. Tools Appl. 75(12), 6737–6754 (2015)CrossRef Qureshi, M.A., Deriche, M.: A new wavelet based efficient image compression algorithm using compressive sensing. Multimed. Tools Appl. 75(12), 6737–6754 (2015)CrossRef
3.
go back to reference Asghari, M.H., Jalali, B.: Discrete anamorphic transform for image compression. IEEE Signal Process. Lett. 21(7), 829–833 (2014)CrossRef Asghari, M.H., Jalali, B.: Discrete anamorphic transform for image compression. IEEE Signal Process. Lett. 21(7), 829–833 (2014)CrossRef
5.
go back to reference Xiao, B., Lu, G., Zhang, Y., Li, W., Wang, G.: Lossless image compression based on integer discrete Tchebichef transform. Neurocomputing 214, 587–593 (2016)CrossRef Xiao, B., Lu, G., Zhang, Y., Li, W., Wang, G.: Lossless image compression based on integer discrete Tchebichef transform. Neurocomputing 214, 587–593 (2016)CrossRef
6.
go back to reference Zuoa, Z., Lan, X., Deng, L., Yao, S., Wang, X.: An improved medical image compression technique with lossless region of interest. Optik Int. J. Light Electron Opt. 126(21), 2825–2831 (2015)CrossRef Zuoa, Z., Lan, X., Deng, L., Yao, S., Wang, X.: An improved medical image compression technique with lossless region of interest. Optik Int. J. Light Electron Opt. 126(21), 2825–2831 (2015)CrossRef
7.
go back to reference Talukder, K.H., Harada, K.: Haar wavelet based approach for image compression and quality assessment of compressed image. Int. J. Appl. Math. 36(1), 1–8 (2010)MathSciNetMATH Talukder, K.H., Harada, K.: Haar wavelet based approach for image compression and quality assessment of compressed image. Int. J. Appl. Math. 36(1), 1–8 (2010)MathSciNetMATH
8.
go back to reference Siddeq, M.M., Rodrigues, M.A.: Novel image compression algorithm for high resolution 3D reconstruction. 3D Res. 5(7), 1–17 (2014) Siddeq, M.M., Rodrigues, M.A.: Novel image compression algorithm for high resolution 3D reconstruction. 3D Res. 5(7), 1–17 (2014)
9.
go back to reference George, M., Thomas, M., Jayadas, C.K.: A methodology for spatial domain image compression based on Hops encoding. Proc. Technol. 25, 52–59 (2016)CrossRef George, M., Thomas, M., Jayadas, C.K.: A methodology for spatial domain image compression based on Hops encoding. Proc. Technol. 25, 52–59 (2016)CrossRef
10.
go back to reference Yao, J., Liu, G.: A novel color image compression algorithm using the human visual contrast sensitivity characteristics. Photonic Sens. 7(1), 72–81 (2017)CrossRef Yao, J., Liu, G.: A novel color image compression algorithm using the human visual contrast sensitivity characteristics. Photonic Sens. 7(1), 72–81 (2017)CrossRef
11.
go back to reference Fante, K.A., Bhaumik, B., Chatterjee, S.: Design and implementation of computationally efficient image compressor for wireless capsule endoscopy. Circuits Syst. Signal Process. 35(5), 1677–1703 (2016)CrossRef Fante, K.A., Bhaumik, B., Chatterjee, S.: Design and implementation of computationally efficient image compressor for wireless capsule endoscopy. Circuits Syst. Signal Process. 35(5), 1677–1703 (2016)CrossRef
12.
go back to reference Bruylants, T., Munteanu, A., Schelkens, P.: Wavelet based volumetric medical image compression. Signal Process. Image Commun. 31, 112–133 (2015)CrossRef Bruylants, T., Munteanu, A., Schelkens, P.: Wavelet based volumetric medical image compression. Signal Process. Image Commun. 31, 112–133 (2015)CrossRef
13.
go back to reference Kaur, K., Malhotra, S.: Image compression using HAAR wavelet transform and discrete cosine transform. Int. J. Comput. Appl. 125(11), 28–31 (2015) Kaur, K., Malhotra, S.: Image compression using HAAR wavelet transform and discrete cosine transform. Int. J. Comput. Appl. 125(11), 28–31 (2015)
15.
go back to reference Kumari, V., Thanushkodi, K.: Image compression using wavelet transform and graph cut algorithm. J. Theoret. Appl. Inf. Technol. 53(3), 437–445 (2013) Kumari, V., Thanushkodi, K.: Image compression using wavelet transform and graph cut algorithm. J. Theoret. Appl. Inf. Technol. 53(3), 437–445 (2013)
16.
go back to reference Abo-Zahhad, M., RagabGharieb, R., Ahmed, S.M., Ellah, M.K.A.: Huffman image compression incorporating DPCM and DWT. J. Signal Inf. Process. 6, 123–135 (2015) Abo-Zahhad, M., RagabGharieb, R., Ahmed, S.M., Ellah, M.K.A.: Huffman image compression incorporating DPCM and DWT. J. Signal Inf. Process. 6, 123–135 (2015)
17.
go back to reference Chowdhury, M.M.H., Khatun, A.: Image compression using discrete wavelet transform. IJCSI Int. J. Comput. Sci. Issues 9(4), 327–330 (2012) Chowdhury, M.M.H., Khatun, A.: Image compression using discrete wavelet transform. IJCSI Int. J. Comput. Sci. Issues 9(4), 327–330 (2012)
19.
go back to reference Gomathi, R., Antony Kumar, A.V.: Neural network technique for image compression. IET Image Process. 10(3), 222–226 (2016)CrossRef Gomathi, R., Antony Kumar, A.V.: Neural network technique for image compression. IET Image Process. 10(3), 222–226 (2016)CrossRef
20.
go back to reference Singh, J., Kaur, H.: A compression artifacts reduction method in compressed image. Int. J. Comput. Appl. 140(3), 1–5 (2016) Singh, J., Kaur, H.: A compression artifacts reduction method in compressed image. Int. J. Comput. Appl. 140(3), 1–5 (2016)
Metadata
Title
Quantization based wavelet transformation technique for digital image compression with removal of multiple artifacts and noises
Authors
S. Suresh Kumar
H. Mangalam
Publication date
04-12-2017
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 5/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1379-1

Other articles of this Special Issue 5/2019

Cluster Computing 5/2019 Go to the issue

Premium Partner