Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Quantum-Dot Mode-Locked Lasers: Sources for Tunable Optical and Electrical Pulse Combs

Authors : Dejan Arsenijević, Dieter Bimberg

Published in: Green Photonics and Electronics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter optical and electrical properties of quantum-dot mode-locked semiconductor lasers as well as applications based on these devices are discussed. Section 4.1 gives a short overview of different pulse generation and mode-locking techniques, with the main focus on passive mode locking, as well as details on the laser design and advanced features of quantum-dot devices. Timing-jitter reduction and frequency-tuning techniques (hybrid mode locking, optical injection and optical self-feedback) are compared in Sect. 4.2. Section 4.3 is devoted to applications of mode-locked lasers in photonic terahertz signal generation and optical data communication systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.F. Liu, M. Fukazawa, Y. Kawai, T. Kamiya, Gain-switched picosecond pulse (<10 ps) generation from 1.3 µm InGaAsP laser-diodes. IEEE J. Quantum Electron. 25, 1417–1425 (1989)CrossRef H.F. Liu, M. Fukazawa, Y. Kawai, T. Kamiya, Gain-switched picosecond pulse (<10 ps) generation from 1.3 µm InGaAsP laser-diodes. IEEE J. Quantum Electron. 25, 1417–1425 (1989)CrossRef
2.
go back to reference P.P. Vasilev, Ultrashort pulse generation in diode-lasers. Opt. Quant. Electron. 24, 801–824 (1992)CrossRef P.P. Vasilev, Ultrashort pulse generation in diode-lasers. Opt. Quant. Electron. 24, 801–824 (1992)CrossRef
3.
go back to reference F. Van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, et al., Quantum dash mode-locked lasers for millimeter wave signal generation and transmission, in Annual Meeting of the IEEE Photonics Society, Denver, CO, 2010, pp. 187–188 F. Van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, et al., Quantum dash mode-locked lasers for millimeter wave signal generation and transmission, in Annual Meeting of the IEEE Photonics Society, Denver, CO, 2010, pp. 187–188
4.
go back to reference A. Stohr, S. Babiel, P.J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz et al., Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010)CrossRef A. Stohr, S. Babiel, P.J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz et al., Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010)CrossRef
5.
go back to reference W.H. Knox, Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 6, 1273–1278 (2000) W.H. Knox, Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 6, 1273–1278 (2000)
6.
go back to reference D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber et al., 26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 5, 364–371 (2011)CrossRef D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber et al., 26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 5, 364–371 (2011)CrossRef
7.
go back to reference C. Dorrer, High-speed measurements for optical telecommunication systems. IEEE J. Sel. Top. Quantum Electron. 12, 843–858 (2006)CrossRef C. Dorrer, High-speed measurements for optical telecommunication systems. IEEE J. Sel. Top. Quantum Electron. 12, 843–858 (2006)CrossRef
8.
go back to reference X. Huang, A. Stintz, H. Li, L.F. Lester, J. Cheng, K.J. Malloy, Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett. 78, 2825 (2001)CrossRef X. Huang, A. Stintz, H. Li, L.F. Lester, J. Cheng, K.J. Malloy, Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett. 78, 2825 (2001)CrossRef
9.
go back to reference A. Gubenko, D. Livshits, I. Krestnikov, S. Mikhrin, A. Kozhukhov, A. Kovsh et al., High-power monolithic passively modelocked quantum-dot laser. Electron. Lett. 41, 1124 (2005)CrossRef A. Gubenko, D. Livshits, I. Krestnikov, S. Mikhrin, A. Kozhukhov, A. Kovsh et al., High-power monolithic passively modelocked quantum-dot laser. Electron. Lett. 41, 1124 (2005)CrossRef
10.
go back to reference M. Laemmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A.R. Kovsh et al., Distortion-free optical amplification of 20–80 GHz modelocked laser pulses at 1.3 [micro sign]m using quantum dots. Electron. Lett. 42, 697 (2006)CrossRef M. Laemmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A.R. Kovsh et al., Distortion-free optical amplification of 20–80 GHz modelocked laser pulses at 1.3 [micro sign]m using quantum dots. Electron. Lett. 42, 697 (2006)CrossRef
11.
go back to reference D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168–170 (2008)CrossRef D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168–170 (2008)CrossRef
12.
go back to reference R.L. Sellin, C. Ribbat, M. Grundmann, N.N. Ledentsov, D. Bimberg, Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Appl. Phys. Lett. 78, 1207 (2001)CrossRef R.L. Sellin, C. Ribbat, M. Grundmann, N.N. Ledentsov, D. Bimberg, Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Appl. Phys. Lett. 78, 1207 (2001)CrossRef
13.
go back to reference O.B. Shchekin, D.G. Deppe, 1.3 mu m InAs quantum dot laser with T-o = 161 K from 0 to 80 degrees C. Appl. Phys. Lett. 80, 3277–3279 (2002)CrossRef O.B. Shchekin, D.G. Deppe, 1.3 mu m InAs quantum dot laser with T-o = 161 K from 0 to 80 degrees C. Appl. Phys. Lett. 80, 3277–3279 (2002)CrossRef
14.
go back to reference D.B. Malins, A. Gomez-Iglesias, S.J. White, W. Sibbett, A. Miller, E.U. Rafailov, Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm. Appl. Phys. Lett. 89, 171111 (2006)CrossRef D.B. Malins, A. Gomez-Iglesias, S.J. White, W. Sibbett, A. Miller, E.U. Rafailov, Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm. Appl. Phys. Lett. 89, 171111 (2006)CrossRef
15.
go back to reference J. Gomis-Bresco, S. Dommers-Volkel, O. Schops, Y. Kaptan, O. Dyatlova, D. Bimberg, et al., Time-resolved amplified spontaneous emission in quantum dots. Appl. Phys. Lett. 97 (2010) J. Gomis-Bresco, S. Dommers-Volkel, O. Schops, Y. Kaptan, O. Dyatlova, D. Bimberg, et al., Time-resolved amplified spontaneous emission in quantum dots. Appl. Phys. Lett. 97 (2010)
16.
go back to reference D.G. Deppe, H. Huang, O.B. Shchekin, Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 38, 1587–1593 (2002)CrossRef D.G. Deppe, H. Huang, O.B. Shchekin, Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 38, 1587–1593 (2002)CrossRef
17.
go back to reference A.R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.P. Vasil’ev, E.A. Semenova, et al., InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J. Cryst. Growth 251, 729–736 (2003) A.R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.P. Vasil’ev, E.A. Semenova, et al., InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J. Cryst. Growth 251, 729–736 (2003)
18.
go back to reference G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, et al., Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz. IEEE J. Quantum Electron. 45, 1429–1435 (2009) G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, et al., Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz. IEEE J. Quantum Electron. 45, 1429–1435 (2009)
19.
go back to reference J.K. Mee, R. Raghunathan, J.B. Wright, L.F. Lester, Device geometry considerations for ridge waveguide quantum dot mode-locked lasers. J. Phys. D Appl. Phys. 47, 233001 (2014)CrossRef J.K. Mee, R. Raghunathan, J.B. Wright, L.F. Lester, Device geometry considerations for ridge waveguide quantum dot mode-locked lasers. J. Phys. D Appl. Phys. 47, 233001 (2014)CrossRef
20.
go back to reference E. Rouvalis, D. Arsenijević, M. Spiegelberg, T. Sadeev, R. Ziegler, A.G. Steffan, et al., 40 GHz quantum quantum-dot mode-locked laser packaged module operating at 1310 nm, in Asia Communications and Photonics Conference (ACP), Shanghai, China, 2014, pp. 1–3 E. Rouvalis, D. Arsenijević, M. Spiegelberg, T. Sadeev, R. Ziegler, A.G. Steffan, et al., 40 GHz quantum quantum-dot mode-locked laser packaged module operating at 1310 nm, in Asia Communications and Photonics Conference (ACP), Shanghai, China, 2014, pp. 1–3
21.
go back to reference H.A. Haus, Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11, 736–746 (1975) H.A. Haus, Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11, 736–746 (1975)
22.
go back to reference D.J. Derickson, R.J. Helkey, A. Mar, J.R. Karin, J.G. Wasserbauer, J.E. Bowers, Short pulse generation using multisegment mode-locked semiconductor-lasers. IEEE J. Quantum Electron. 28, 2186–2202 (1992)CrossRef D.J. Derickson, R.J. Helkey, A. Mar, J.R. Karin, J.G. Wasserbauer, J.E. Bowers, Short pulse generation using multisegment mode-locked semiconductor-lasers. IEEE J. Quantum Electron. 28, 2186–2202 (1992)CrossRef
23.
go back to reference M.G. Thompson, A.R. Rae, X. Mo, R.V. Penty, I.H. White, InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009)CrossRef M.G. Thompson, A.R. Rae, X. Mo, R.V. Penty, I.H. White, InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009)CrossRef
24.
go back to reference E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov et al., Stability of the mode-locked regime in quantum dot lasers. Appl. Phys. Lett. 91, 231116 (2007)CrossRef E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov et al., Stability of the mode-locked regime in quantum dot lasers. Appl. Phys. Lett. 91, 231116 (2007)CrossRef
25.
go back to reference A.G. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg, et al., Dynamical regimes in a monolithic passively mode-locked quantum dot laser, J. Opt. Soc. Am. B-Opt. Phys. 27, 2102–2109 (2010) A.G. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg, et al., Dynamical regimes in a monolithic passively mode-locked quantum dot laser, J. Opt. Soc. Am. B-Opt. Phys. 27, 2102–2109 (2010)
26.
go back to reference M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White et al., Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers. Appl. Phys. Lett. 88, 133119 (2006)CrossRef M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White et al., Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers. Appl. Phys. Lett. 88, 133119 (2006)CrossRef
27.
go back to reference X.D. Huang, A. Stintz, H. Li, A. Rice, G.T. Liu, L.F. Lester et al., Bistable operation of a two-section 1.3-mu m InAs quantum dot laser—absorption saturation and the quantum confined Stark effect. IEEE J. Quantum Electron. 37, 414–417 (2001)CrossRef X.D. Huang, A. Stintz, H. Li, A. Rice, G.T. Liu, L.F. Lester et al., Bistable operation of a two-section 1.3-mu m InAs quantum dot laser—absorption saturation and the quantum confined Stark effect. IEEE J. Quantum Electron. 37, 414–417 (2001)CrossRef
28.
go back to reference M.G. Thompson, K.T. Tan, C. Marinelli, K.A. Williams, R.V. Penty, I.H. White et al., Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at ∼1.3 [micro sign]m. Electron. Lett. 40, 346 (2004)CrossRef M.G. Thompson, K.T. Tan, C. Marinelli, K.A. Williams, R.V. Penty, I.H. White et al., Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at ∼1.3 [micro sign]m. Electron. Lett. 40, 346 (2004)CrossRef
29.
go back to reference M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M.G. Thompson, K.T. Tan et al., Direct modulation and mode locking of 1.3 μm quantum dot lasers. New J. Phys. 6, 181 (2004)CrossRef M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M.G. Thompson, K.T. Tan et al., Direct modulation and mode locking of 1.3 μm quantum dot lasers. New J. Phys. 6, 181 (2004)CrossRef
30.
go back to reference H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, D. Bimberg, Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. Opt. Express 18, 3415–3425 (2010) H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, D. Bimberg, Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. Opt. Express 18, 3415–3425 (2010)
31.
go back to reference D. von der Linde, Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 39, 201–217 (1986)CrossRef D. von der Linde, Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 39, 201–217 (1986)CrossRef
32.
go back to reference ITU, The control of jitter and wander within the optical transport network (OTN)—recommendation G.8251, in Series G: Transmission Systems and Media, Digital Systems and Networks, ITU-T (2010) ITU, The control of jitter and wander within the optical transport network (OTN)—recommendation G.8251, in Series G: Transmission Systems and Media, Digital Systems and Networks, ITU-T (2010)
33.
go back to reference D. Eliyahu, R.A. Salvatore, A. Yariv, Noise characterization of a pulse train generated by actively mode-locked lasers. J. Opt. Soc. Am. B-Opt. Phys. 13, 1619–1626 (1996)CrossRef D. Eliyahu, R.A. Salvatore, A. Yariv, Noise characterization of a pulse train generated by actively mode-locked lasers. J. Opt. Soc. Am. B-Opt. Phys. 13, 1619–1626 (1996)CrossRef
34.
go back to reference H.A. Haus, A. Mecozzi, Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993) H.A. Haus, A. Mecozzi, Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993)
35.
go back to reference D. Eliyahu, R.A. Salvatore, A. Yariv, Effect of noise on the power spectrum of passively mode-locked lasers. J. Opt. Soc. Am. B-Opt. Phys. 14, 167–174 (1997)CrossRef D. Eliyahu, R.A. Salvatore, A. Yariv, Effect of noise on the power spectrum of passively mode-locked lasers. J. Opt. Soc. Am. B-Opt. Phys. 14, 167–174 (1997)CrossRef
36.
go back to reference F. Kefelian, S. O’Donoghue, M.T. Todaro, J.G. McInerney, G. Huyet, RF linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photonics Technol. Lett. 20, 1405–1407 (2008)CrossRef F. Kefelian, S. O’Donoghue, M.T. Todaro, J.G. McInerney, G. Huyet, RF linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photonics Technol. Lett. 20, 1405–1407 (2008)CrossRef
37.
go back to reference L.A. Jiang, S.T. Wong, M.E. Grein, E.P. Ippen, H.A. Haus, Measuring timing jitter with optical cross correlations. IEEE J. Quantum Electron. 38, 1047–1052 (2002) L.A. Jiang, S.T. Wong, M.E. Grein, E.P. Ippen, H.A. Haus, Measuring timing jitter with optical cross correlations. IEEE J. Quantum Electron. 38, 1047–1052 (2002)
38.
go back to reference M.G. Thompson, C. Marinelli, K.T. Tan, K. A. Williams, R.V. Penty, I.H. White, et al., 10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers. Electron. Lett. 39, 1121–1122 (2003) M.G. Thompson, C. Marinelli, K.T. Tan, K. A. Williams, R.V. Penty, I.H. White, et al., 10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers. Electron. Lett. 39, 1121–1122 (2003)
39.
go back to reference M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, D. Bimberg, High-speed mode-locked quantum-dot lasers and optical amplifiers. Proc. IEEE 95, 1767–1778 (2007)CrossRef M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, D. Bimberg, High-speed mode-locked quantum-dot lasers and optical amplifiers. Proc. IEEE 95, 1767–1778 (2007)CrossRef
40.
go back to reference B. Huettl, R. Kaiser, Monolithically integrated optical pulse sources for ultra-high speed applications, in URSI General Assemblies, New Delhi, India, 2005 B. Huettl, R. Kaiser, Monolithically integrated optical pulse sources for ultra-high speed applications, in URSI General Assemblies, New Delhi, India, 2005
41.
go back to reference R. Kaiser, B. Hüttl, W. Rehbein, H. Stolpe, H. Heidrich, S. Fidorra, et al., Repetition rate and wavelength tuning of monolithic 40 GHz mode-locked lasers based on InP, in Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, 2003, pp. 255–258 R. Kaiser, B. Hüttl, W. Rehbein, H. Stolpe, H. Heidrich, S. Fidorra, et al., Repetition rate and wavelength tuning of monolithic 40 GHz mode-locked lasers based on InP, in Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, 2003, pp. 255–258
42.
go back to reference M.G. Thompson, D. Larson, A.R. Rae, K. Yvind, R.V. Penty, I.H. White, et al., Monolithic hybrid and passive mode-locked 40 GHz quantum dot laser diodes, in European Conference on Optical Communication (ECOC), Cannes, France, 2006, pp. 1–2 M.G. Thompson, D. Larson, A.R. Rae, K. Yvind, R.V. Penty, I.H. White, et al., Monolithic hybrid and passive mode-locked 40 GHz quantum dot laser diodes, in European Conference on Optical Communication (ECOC), Cannes, France, 2006, pp. 1–2
43.
go back to reference K. Yvind, P.M. Smowton, D. Larsson, J. Mørk, J.M. Hvam, M. Thompson, et al., Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures, in SPIE Photonics West, San Jose, CA, 2008, pp. 69090A-1–69090A-9 K. Yvind, P.M. Smowton, D. Larsson, J. Mørk, J.M. Hvam, M. Thompson, et al., Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures, in SPIE Photonics West, San Jose, CA, 2008, pp. 69090A-1–69090A-9
44.
go back to reference G. Fiol, D. Arsenijević, D. Bimberg, A.G. Vladimirov, M. Wolfrum, E.A. Viktorov, et al., Hybrid mode-locking in a 40 GHz monolithic quantum dot laser. Appl. Phys. Lett. 96, 011104–011104-3 (2010) G. Fiol, D. Arsenijević, D. Bimberg, A.G. Vladimirov, M. Wolfrum, E.A. Viktorov, et al., Hybrid mode-locking in a 40 GHz monolithic quantum dot laser. Appl. Phys. Lett. 96, 011104–011104-3 (2010)
45.
go back to reference A.G. Vladimirov, M. Wolfrum, G. Fiol, D. Arsenijević, D. Bimberg, E. Viktorov, et al., Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser, in SPIE Photonics Europe, Brussels, Belgium, 2010, pp. 77200Y-77200Y-8 A.G. Vladimirov, M. Wolfrum, G. Fiol, D. Arsenijević, D. Bimberg, E. Viktorov, et al., Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser, in SPIE Photonics Europe, Brussels, Belgium, 2010, pp. 77200Y-77200Y-8
46.
go back to reference H.A. Haus, Modelocking of semiconductor-laser diodes. Jpn. J. Appl. Phys. 20, 1007–1020 (1981)CrossRef H.A. Haus, Modelocking of semiconductor-laser diodes. Jpn. J. Appl. Phys. 20, 1007–1020 (1981)CrossRef
47.
go back to reference B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe et al., Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers. Appl. Phys. Lett. 88, 221104 (2006)CrossRef B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe et al., Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers. Appl. Phys. Lett. 88, 221104 (2006)CrossRef
48.
go back to reference A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, NY, 1979)MATH A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, NY, 1979)MATH
49.
go back to reference R. Arkhipov, A. Pimenov, M. Radziunas, D. Rachinskii, A.G. Vladimirov, D. Arsenijević, et al., Hybrid mode locking in semiconductor lasers: simulations, analysis, and experiments. IEEE J. Sel. Top. Quantum Electron. 19, 1100208–1100208-8 (2013) R. Arkhipov, A. Pimenov, M. Radziunas, D. Rachinskii, A.G. Vladimirov, D. Arsenijević, et al., Hybrid mode locking in semiconductor lasers: simulations, analysis, and experiments. IEEE J. Sel. Top. Quantum Electron. 19, 1100208–1100208-8 (2013)
50.
go back to reference V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn. (Springer-Verlag, New York, NY, 1988)CrossRef V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn. (Springer-Verlag, New York, NY, 1988)CrossRef
51.
go back to reference D. Arsenijević, M. Kleinert, M. Spiegelberg, M. Stubenrauch, D. Bimberg, 1.31 μm quantum-dot hybrid mode-locked lasers for optical time-division multiplexing, in International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015, pp. 1–4 D. Arsenijević, M. Kleinert, M. Spiegelberg, M. Stubenrauch, D. Bimberg, 1.31 μm quantum-dot hybrid mode-locked lasers for optical time-division multiplexing, in International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015, pp. 1–4
52.
go back to reference W. Freude, J. Pfeifle, R. Watts, I. Shkarban, S. Wolf, V. Vujicic, et al., Phase-noise compensated carriers from an optical frequency comb allowing terabit transmission, in International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015, pp. 1–4 W. Freude, J. Pfeifle, R. Watts, I. Shkarban, S. Wolf, V. Vujicic, et al., Phase-noise compensated carriers from an optical frequency comb allowing terabit transmission, in International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015, pp. 1–4
53.
go back to reference A. Takada, W. Imajuku, Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking. IEEE Photonics Technol. Lett. 9, 1328–1330 (1997)CrossRef A. Takada, W. Imajuku, Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking. IEEE Photonics Technol. Lett. 9, 1328–1330 (1997)CrossRef
54.
go back to reference M. Teshima, K. Sato, M. Koga, Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes. IEEE J. Quantum Electron. 34, 1588–1596 (1998)CrossRef M. Teshima, K. Sato, M. Koga, Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes. IEEE J. Quantum Electron. 34, 1588–1596 (1998)CrossRef
55.
go back to reference J. Kim, P.J. Delfyett, Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser. Opt. Express 16, 11153–11161 (2008)CrossRef J. Kim, P.J. Delfyett, Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser. Opt. Express 16, 11153–11161 (2008)CrossRef
56.
go back to reference T. Habruseva, G. Huyet, and S.P. Hegarty, Dynamics of quantum-dot mode-locked lasers with optical injection. IEEE J. Sel. Top. Quantum Electron. 17, 1272–1279 (2011) T. Habruseva, G. Huyet, and S.P. Hegarty, Dynamics of quantum-dot mode-locked lasers with optical injection. IEEE J. Sel. Top. Quantum Electron. 17, 1272–1279 (2011)
57.
go back to reference G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3 µm range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26, 014006–014006-5 15 (2011) G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3 µm range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26, 014006–014006-5 15 (2011)
58.
go back to reference L. Goldberg, H.F. Taylor, J.F. Weller, Fm sideband injection locking of diode-lasers. Electron. Lett. 18, 1019–1020 (1982)CrossRef L. Goldberg, H.F. Taylor, J.F. Weller, Fm sideband injection locking of diode-lasers. Electron. Lett. 18, 1019–1020 (1982)CrossRef
59.
go back to reference T. Habruseva, S. O’Donoghue, N. Rebrova, D.A. Reid, L.P. Barry, D. Rachinskii et al., Quantum-dot mode-locked lasers with dual-mode optical injection. IEEE Photonics Technol. Lett. 22, 359–361 (2010)CrossRef T. Habruseva, S. O’Donoghue, N. Rebrova, D.A. Reid, L.P. Barry, D. Rachinskii et al., Quantum-dot mode-locked lasers with dual-mode optical injection. IEEE Photonics Technol. Lett. 22, 359–361 (2010)CrossRef
60.
go back to reference T. Habruseva, D. Arsenijević, M. Kleinert, D. Bimberg, G. Huyet, S.P. Hegarty, Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers. Appl. Phys. Lett. 104, 021112–021112-4 (2014) T. Habruseva, D. Arsenijević, M. Kleinert, D. Bimberg, G. Huyet, S.P. Hegarty, Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers. Appl. Phys. Lett. 104, 021112–021112-4 (2014)
61.
go back to reference R. Tkach, A. Chraplyvy, Regimes of feedback effects in 1.5-µm distributed feedback lasers. J. Lightw. Technol. 4, 1655–1661 (1986) R. Tkach, A. Chraplyvy, Regimes of feedback effects in 1.5-µm distributed feedback lasers. J. Lightw. Technol. 4, 1655–1661 (1986)
62.
go back to reference C. Otto, K. Lüdge, A.G. Vladimirov, M. Wolfrum, E. Schöll, Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback. New J. Phys. 14, 113033 (2012)CrossRef C. Otto, K. Lüdge, A.G. Vladimirov, M. Wolfrum, E. Schöll, Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback. New J. Phys. 14, 113033 (2012)CrossRef
63.
go back to reference C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96, 051118 (2010)CrossRef C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96, 051118 (2010)CrossRef
64.
go back to reference A. Akrout, A. Shen, A. Enard, G.H. Duan, F. Lelarge, A. Ramdane, Low phase noise all-optical oscillator using quantum dash modelocked laser. Electron. Lett. 46, 73 (2010)CrossRef A. Akrout, A. Shen, A. Enard, G.H. Duan, F. Lelarge, A. Ramdane, Low phase noise all-optical oscillator using quantum dash modelocked laser. Electron. Lett. 46, 73 (2010)CrossRef
65.
go back to reference E.A. Avrutin, S. Xibin, B.M. Russell, Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation. Opt. Quant. Electron. 40, 1175–1180 (2008)CrossRef E.A. Avrutin, S. Xibin, B.M. Russell, Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation. Opt. Quant. Electron. 40, 1175–1180 (2008)CrossRef
66.
go back to reference D. Arsenijević, M. Kleinert, D. Bimberg, Phase noise and jitter reduction by optical feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett. 103, 231101–231101-4 (2013) D. Arsenijević, M. Kleinert, D. Bimberg, Phase noise and jitter reduction by optical feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett. 103, 231101–231101-4 (2013)
67.
go back to reference D. Arsenijević, M. Kleinert, D. Bimberg, Breakthroughs in photonics 2013: passive mode-locking of quantum-dot lasers. IEEE Photonics J. 6, 0700306–0700306-6 (2014) D. Arsenijević, M. Kleinert, D. Bimberg, Breakthroughs in photonics 2013: passive mode-locking of quantum-dot lasers. IEEE Photonics J. 6, 0700306–0700306-6 (2014)
68.
go back to reference C. Simos, H. Simos, T. Nikas, D. Syvridis, Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback, vol. 9506, (2015), p. 95060F C. Simos, H. Simos, T. Nikas, D. Syvridis, Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback, vol. 9506, (2015), p. 95060F
69.
go back to reference X.Q. Qi, J.M. Liu, Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011) X.Q. Qi, J.M. Liu, Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011)
70.
go back to reference E.H. Bottcher, E. Droge, D. Bimberg, 200 GHz distributed InGaAs metal-semiconductor-metal photodetectors for the long-wavelength regime, in International Symposium on Compound Semiconductors, St. Petersburg, Russia, 1997, pp. 55–60 E.H. Bottcher, E. Droge, D. Bimberg, 200 GHz distributed InGaAs metal-semiconductor-metal photodetectors for the long-wavelength regime, in International Symposium on Compound Semiconductors, St. Petersburg, Russia, 1997, pp. 55–60
71.
go back to reference H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004) H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004)
72.
go back to reference H. Ito, T. Furuta, S. Kodama, T. Ishibashi, InP/lnGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth. Electron. Lett. 36, 1809–1810 (2000)CrossRef H. Ito, T. Furuta, S. Kodama, T. Ishibashi, InP/lnGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth. Electron. Lett. 36, 1809–1810 (2000)CrossRef
73.
go back to reference M.J. Fice, E. Rouvalis, L. Ponnampalam, C.C. Renaud, A.J. Seeds, Telecommunications technology-based terahertz sources. Electron. Lett. 46, S28–S31 (2010)CrossRef M.J. Fice, E. Rouvalis, L. Ponnampalam, C.C. Renaud, A.J. Seeds, Telecommunications technology-based terahertz sources. Electron. Lett. 46, S28–S31 (2010)CrossRef
74.
go back to reference S. Osborne, S. O’Brien, E.P. O’Reilly, P.G. Huggard, B.N. Ellison, Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 mu m Fabry-Perot diode laser. Electron. Lett. 44, 296–298 (2008)CrossRef S. Osborne, S. O’Brien, E.P. O’Reilly, P.G. Huggard, B.N. Ellison, Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 mu m Fabry-Perot diode laser. Electron. Lett. 44, 296–298 (2008)CrossRef
75.
go back to reference S.C. Chan, Analysis of an optically injected semiconductor laser for microwave generation. IEEE J. Quantum Electron. 46, 421–428 (2010)CrossRef S.C. Chan, Analysis of an optically injected semiconductor laser for microwave generation. IEEE J. Quantum Electron. 46, 421–428 (2010)CrossRef
76.
go back to reference A. Hurtado, J. Mee, M. Nami, I.D. Henning, M.J. Adams, L.F. Lester, Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser. Opt. Express 21, 10772–10778 (2013)CrossRef A. Hurtado, J. Mee, M. Nami, I.D. Henning, M.J. Adams, L.F. Lester, Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser. Opt. Express 21, 10772–10778 (2013)CrossRef
77.
go back to reference L.A. Johansson, A.J. Seeds, Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop. IEEE Photonics Technol. Lett. 12, 690–692 (2000)CrossRef L.A. Johansson, A.J. Seeds, Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop. IEEE Photonics Technol. Lett. 12, 690–692 (2000)CrossRef
78.
go back to reference D. Novak, Z. Ahmed, R.B. Waterhouse, R.S. Tucker, Signal generation using pulsed semiconductor-lasers for application in millimeter-wave wireless links. IEEE Trans. Microw. Theory Tech. 43, 2257–2262 (1995)CrossRef D. Novak, Z. Ahmed, R.B. Waterhouse, R.S. Tucker, Signal generation using pulsed semiconductor-lasers for application in millimeter-wave wireless links. IEEE Trans. Microw. Theory Tech. 43, 2257–2262 (1995)CrossRef
79.
go back to reference D.J. Derickson, R.J. Helkey, A. Mar, J.G. Wasserbauer, Y.G. Wey, J.E. Bowers, Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers, in IEEE MTT-S International Microwave Symposium Digest, Albuquerque, NM, 1992, pp. 753–756 D.J. Derickson, R.J. Helkey, A. Mar, J.G. Wasserbauer, Y.G. Wey, J.E. Bowers, Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers, in IEEE MTT-S International Microwave Symposium Digest, Albuquerque, NM, 1992, pp. 753–756
80.
go back to reference C.Y. Lin, Y.C. Xin, J.H. Kim, C.G. Christodoulou, L.F. Lester, Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser. IEEE Photonics J. 1, 236–244 (2009)CrossRef C.Y. Lin, Y.C. Xin, J.H. Kim, C.G. Christodoulou, L.F. Lester, Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser. IEEE Photonics J. 1, 236–244 (2009)CrossRef
81.
go back to reference IEEE, IEEE Standard for Letter Designations for Radar-Frequency Bands—IEEE Std 521 (2002) IEEE, IEEE Standard for Letter Designations for Radar-Frequency Bands—IEEE Std 521 (2002)
82.
go back to reference ITU, Nomenclature of the Frequency and Wavelength Bands used in Telecommunications—Recommendation ITU-R V.431–7, ITU-T (2000) ITU, Nomenclature of the Frequency and Wavelength Bands used in Telecommunications—Recommendation ITU-R V.431–7, ITU-T (2000)
83.
go back to reference D. Arsenijević, M. Kleinert, D. Bimberg, Optoelectronic Oscillator, Germany Patent PCT/DE 2014/200257, WO 2014/202074, US 2016/0149377, 2014 D. Arsenijević, M. Kleinert, D. Bimberg, Optoelectronic Oscillator, Germany Patent PCT/DE 2014/200257, WO 2014/202074, US 2016/0149377, 2014
84.
go back to reference P.J. Winzer, R.J. Essiambre, Advanced optical modulation formats. Proc. IEEE 94, 952–985 (2006)CrossRef P.J. Winzer, R.J. Essiambre, Advanced optical modulation formats. Proc. IEEE 94, 952–985 (2006)CrossRef
85.
go back to reference H. Kim, A.H. Gnauck, Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio. IEEE Photonics Technol. Lett. 14, 298–300 (2002)CrossRef H. Kim, A.H. Gnauck, Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio. IEEE Photonics Technol. Lett. 14, 298–300 (2002)CrossRef
86.
go back to reference N.M. Froberg, G. Raybon, U. Koren, B.I. Miller, M.G. Young, M. Chien et al., Generation of 12.5-Gbit/s soliton data stream with an integrated laser-modulator transmitter. Electron. Lett. 30, 1880–1881 (1994)CrossRef N.M. Froberg, G. Raybon, U. Koren, B.I. Miller, M.G. Young, M. Chien et al., Generation of 12.5-Gbit/s soliton data stream with an integrated laser-modulator transmitter. Electron. Lett. 30, 1880–1881 (1994)CrossRef
87.
go back to reference X. Liu, Y. Kao, Generation of RZ-DPSK using a single mach-zehnder modulator and novel driver electronics, in European Conference on Optical Communication (ECOC), Stockholm, Sweden, 2004, pp. 1–2 X. Liu, Y. Kao, Generation of RZ-DPSK using a single mach-zehnder modulator and novel driver electronics, in European Conference on Optical Communication (ECOC), Stockholm, Sweden, 2004, pp. 1–2
88.
go back to reference J. Leibrich, C. Wree, W. Rosenkranz, CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber. IEEE Photonics Technol. Lett. 14, 155–157 (2002)CrossRef J. Leibrich, C. Wree, W. Rosenkranz, CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber. IEEE Photonics Technol. Lett. 14, 155–157 (2002)CrossRef
89.
go back to reference T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J.K. Fischer, et al., Single wavelength channel 10.2 Tb/s TDM-Data capacity using 16-QAM and coherent detection, in Optical Fiber Communication Conference and Exposition (OFC), National Fiber Optic Engineers Conference (NFOEC), Los Angeles, CA, 2011, pp. 1–3 T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J.K. Fischer, et al., Single wavelength channel 10.2 Tb/s TDM-Data capacity using 16-QAM and coherent detection, in Optical Fiber Communication Conference and Exposition (OFC), National Fiber Optic Engineers Conference (NFOEC), Los Angeles, CA, 2011, pp. 1–3
90.
go back to reference L. Boivin, G.J. Pendock, Receiver sensitivity for optically amplified RZ signals with arbitrary duty circle, in Optical Amplifiers and Their Applications (OAA), Nara, Japan, 1999 L. Boivin, G.J. Pendock, Receiver sensitivity for optically amplified RZ signals with arbitrary duty circle, in Optical Amplifiers and Their Applications (OAA), Nara, Japan, 1999
91.
go back to reference W. Idler, A. Klekamp, R. Dischler, J. Lazaro, A. Konczykowska, System performance and tolerances of 43 Gb/s ASK and DPSK modulation formats, in European Conference on Optical Communication (ECOC), Rimini, Italy, 2003, pp. 1006–1007 W. Idler, A. Klekamp, R. Dischler, J. Lazaro, A. Konczykowska, System performance and tolerances of 43 Gb/s ASK and DPSK modulation formats, in European Conference on Optical Communication (ECOC), Rimini, Italy, 2003, pp. 1006–1007
92.
go back to reference A.H. Gnauck, P.J. Winzer, Optical phase-shift-keyed transmission. J. Lightwave Technol. 23, 115–130 (2005)CrossRef A.H. Gnauck, P.J. Winzer, Optical phase-shift-keyed transmission. J. Lightwave Technol. 23, 115–130 (2005)CrossRef
93.
go back to reference J.G. Proakis, Digital Communications (McGraw-Hill, Boston, 2001)MATH J.G. Proakis, Digital Communications (McGraw-Hill, Boston, 2001)MATH
94.
go back to reference R.A. Griffin, A.C. Carter, Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission, in Optical Fiber Communication Conference (OFC), Anaheim, CA, 2002, pp. 367–368 R.A. Griffin, A.C. Carter, Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission, in Optical Fiber Communication Conference (OFC), Anaheim, CA, 2002, pp. 367–368
95.
go back to reference N.S. Avlonitis, E.M. Yeatman, Performance evaluation of optical DQPSK using saddle point approximation. J. Lightwave Technol. 24, 1176–1185 (2006)CrossRef N.S. Avlonitis, E.M. Yeatman, Performance evaluation of optical DQPSK using saddle point approximation. J. Lightwave Technol. 24, 1176–1185 (2006)CrossRef
96.
go back to reference D. Arsenijević, D. Bimberg, Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying, in SPIE Photonics Europe, Brussels, Belgium, 2016, pp. 98920S–98920S-10 D. Arsenijević, D. Bimberg, Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying, in SPIE Photonics Europe, Brussels, Belgium, 2016, pp. 98920S–98920S-10
97.
go back to reference D. Arsenijević, H. Schmeckebier, M. Kleinert, E. Rouvalis, R. Ziegler, A.G. Steffan, et al., Quantum-dot mode-locked lasers for microwave-signal generation and 160 Gbps optical communication, in IEEE Photonics Conference (IPC), Reston, VA, 2015 D. Arsenijević, H. Schmeckebier, M. Kleinert, E. Rouvalis, R. Ziegler, A.G. Steffan, et al., Quantum-dot mode-locked lasers for microwave-signal generation and 160 Gbps optical communication, in IEEE Photonics Conference (IPC), Reston, VA, 2015
Metadata
Title
Quantum-Dot Mode-Locked Lasers: Sources for Tunable Optical and Electrical Pulse Combs
Authors
Dejan Arsenijević
Dieter Bimberg
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-67002-7_4