Skip to main content
Top
Published in: Quantum Information Processing 3/2024

01-03-2024

Quantum error mitigation in the regime of high noise using deep neural network: Trotterized dynamics

Authors: Andrey Zhukov, Walter Pogosov

Published in: Quantum Information Processing | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We address a learning-based quantum error mitigation method, which utilizes deep neural network applied at the postprocessing stage, and study its performance in the presence of different types of quantum noises. We concentrate on the simulation of Trotterized dynamics of 2D spin lattice in the regime of high noise, when expectation values of bounded traceless observables are strongly suppressed. By using numerical simulations, we demonstrate a dramatic improvement of data quality for both local weight-1 and weight-2 observables for the depolarizing and inhomogeneous Pauli channels. At the same time, the effect of coherent ZZ crosstalks is not mitigated, so that in practice crosstalks should be at first converted into incoherent errors by randomized compiling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)CrossRef Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)CrossRef
2.
go back to reference Kim, Y., Eddins, A., Anand, S., Wei, K.X., Van Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., et al.: Evidence for the utility of quantum computing before fault tolerance. Nature 618(7965), 500–505 (2023)ADSCrossRef Kim, Y., Eddins, A., Anand, S., Wei, K.X., Van Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., et al.: Evidence for the utility of quantum computing before fault tolerance. Nature 618(7965), 500–505 (2023)ADSCrossRef
3.
go back to reference Li, Y., Benjamin, S.C.: Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7(2), 021050 (2017) Li, Y., Benjamin, S.C.: Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7(2), 021050 (2017)
4.
5.
go back to reference Endo, S., Benjamin, S.C., Li, Y.: Practical quantum error mitigation for near-future applications. Phys. Rev. X 8(3), 031027 (2018) Endo, S., Benjamin, S.C., Li, Y.: Practical quantum error mitigation for near-future applications. Phys. Rev. X 8(3), 031027 (2018)
6.
go back to reference Kandala, A., Temme, K., Córcoles, A.D., Mezzacapo, A., Chow, J.M., Gambetta, J.M.: Error mitigation extends the computational reach of a noisy quantum processor. Nature 567(7749), 491–495 (2019)ADSCrossRef Kandala, A., Temme, K., Córcoles, A.D., Mezzacapo, A., Chow, J.M., Gambetta, J.M.: Error mitigation extends the computational reach of a noisy quantum processor. Nature 567(7749), 491–495 (2019)ADSCrossRef
7.
go back to reference He, A., Nachman, B., de Jong, W.A., Bauer, C.W.: Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Phys. Rev. A 102(1), 012426 (2020)ADSMathSciNetCrossRef He, A., Nachman, B., de Jong, W.A., Bauer, C.W.: Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Phys. Rev. A 102(1), 012426 (2020)ADSMathSciNetCrossRef
8.
go back to reference Vovrosh, J., Khosla, K.E., Greenaway, S., Self, C., Kim, M.S., Knolle, J.: Simple mitigation of global depolarizing errors in quantum simulations. Phys. Rev. E 104(3), 035309 (2021)ADSCrossRef Vovrosh, J., Khosla, K.E., Greenaway, S., Self, C., Kim, M.S., Knolle, J.: Simple mitigation of global depolarizing errors in quantum simulations. Phys. Rev. E 104(3), 035309 (2021)ADSCrossRef
9.
go back to reference Urbanek, M., Nachman, B., Pascuzzi, V.R., He, A., Bauer, C.W., de Jong, W.A.: Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett. 127(27), 270502 (2021)MathSciNetCrossRef Urbanek, M., Nachman, B., Pascuzzi, V.R., He, A., Bauer, C.W., de Jong, W.A.: Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett. 127(27), 270502 (2021)MathSciNetCrossRef
10.
go back to reference Strikis, A., Qin, D., Chen, Y., Benjamin, S.C., Li, Y.: Learning-based quantum error mitigation. PRX. Quantum 2(4), 040330 (2021)ADS Strikis, A., Qin, D., Chen, Y., Benjamin, S.C., Li, Y.: Learning-based quantum error mitigation. PRX. Quantum 2(4), 040330 (2021)ADS
11.
go back to reference Czarnik, P., Arrasmith, A., Coles, P.J., Cincio, L.: Error mitigation with clifford quantum-circuit data. Quantum 5, 592 (2021)CrossRef Czarnik, P., Arrasmith, A., Coles, P.J., Cincio, L.: Error mitigation with clifford quantum-circuit data. Quantum 5, 592 (2021)CrossRef
12.
go back to reference Sun, J., Yuan, X., Tsunoda, T., Vedral, V., Benjamin, S.C., Endo, S.: Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Phys. Rev. Appl. 15(3), 034026 (2021)ADSCrossRef Sun, J., Yuan, X., Tsunoda, T., Vedral, V., Benjamin, S.C., Endo, S.: Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Phys. Rev. Appl. 15(3), 034026 (2021)ADSCrossRef
13.
go back to reference Cai, Z.: Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. Npj Quantum Inf. 7(1), 80 (2021)ADSCrossRef Cai, Z.: Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. Npj Quantum Inf. 7(1), 80 (2021)ADSCrossRef
14.
go back to reference Mari, A., Shammah, N., Zeng, W.J.: Extending quantum probabilistic error cancellation by noise scaling. Phys. Rev. A 104(5), 052607 (2021)ADSMathSciNetCrossRef Mari, A., Shammah, N., Zeng, W.J.: Extending quantum probabilistic error cancellation by noise scaling. Phys. Rev. A 104(5), 052607 (2021)ADSMathSciNetCrossRef
15.
go back to reference Cai, Z., Babbush, R., Benjamin, S.C., Endo, S., Huggins, W.J., Li, Y., McClean, J.R., O’Brien, T.E.: Quantum Error Mitigation. arXiv:2210.00921 (2022) Cai, Z., Babbush, R., Benjamin, S.C., Endo, S., Huggins, W.J., Li, Y., McClean, J.R., O’Brien, T.E.: Quantum Error Mitigation. arXiv:​2210.​00921 (2022)
16.
go back to reference Perrin, H., Scoquart, T., Shnirman, A., Schmalian, J., Snizhko, K.: Mitigating Crosstalk Errors by Randomized Compiling: Simulation of the BCS Model on a Superconducting Quantum Computer. arXiv:2305.02345 (2023) Perrin, H., Scoquart, T., Shnirman, A., Schmalian, J., Snizhko, K.: Mitigating Crosstalk Errors by Randomized Compiling: Simulation of the BCS Model on a Superconducting Quantum Computer. arXiv:​2305.​02345 (2023)
17.
go back to reference Kim, Y., Wood, C.J., Yoder, T.J., Merkel, S.T., Gambetta, J.M., Temme, K., Kandala, A.: Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023)CrossRef Kim, Y., Wood, C.J., Yoder, T.J., Merkel, S.T., Gambetta, J.M., Temme, K., Kandala, A.: Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023)CrossRef
18.
go back to reference Bultrini, D., Gordon, M.H., Czarnik, P., Arrasmith, A., Cerezo, M., Coles, P.J., Cincio, L.: Unifying and benchmarking state-of-the-art quantum error mitigation techniques. Quantum 7, 1034 (2023)CrossRef Bultrini, D., Gordon, M.H., Czarnik, P., Arrasmith, A., Cerezo, M., Coles, P.J., Cincio, L.: Unifying and benchmarking state-of-the-art quantum error mitigation techniques. Quantum 7, 1034 (2023)CrossRef
19.
go back to reference Van Den Berg, E., Minev, Z.K., Kandala, A., Temme, K.: Probabilistic error cancellation with sparse Pauli-Lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023)CrossRef Van Den Berg, E., Minev, Z.K., Kandala, A., Temme, K.: Probabilistic error cancellation with sparse Pauli-Lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023)CrossRef
20.
go back to reference Kern, O., Alber, G., Shepelyansky, D.L.: Quantum error correction of coherent errors by randomization. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 32, 153–156 (2005) Kern, O., Alber, G., Shepelyansky, D.L.: Quantum error correction of coherent errors by randomization. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 32, 153–156 (2005)
21.
go back to reference Wallman, J.J., Emerson, J.: Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94(5), 052325 (2016)ADSCrossRef Wallman, J.J., Emerson, J.: Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94(5), 052325 (2016)ADSCrossRef
22.
go back to reference Hashim, A., Naik, R.K., Morvan, A., Ville, J.-L., Mitchell, B., Kreikebaum, J.M., Davis, M., Smith, E., Iancu, C., O’Brien, K.P., Hincks, I., Wallman, J.J., Emerson, J., Siddiqi, I.: Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021) Hashim, A., Naik, R.K., Morvan, A., Ville, J.-L., Mitchell, B., Kreikebaum, J.M., Davis, M., Smith, E., Iancu, C., O’Brien, K.P., Hincks, I., Wallman, J.J., Emerson, J., Siddiqi, I.: Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021)
23.
go back to reference Zhukov, A., Pogosov, W.: Quantum error reduction with deep neural network applied at the post-processing stage. Quantum Inf. Process. 21(3), 93 (2022)ADSMathSciNetCrossRef Zhukov, A., Pogosov, W.: Quantum error reduction with deep neural network applied at the post-processing stage. Quantum Inf. Process. 21(3), 93 (2022)ADSMathSciNetCrossRef
24.
go back to reference Lennon, D., Moon, H., Camenzind, L., Yu, L., Zumbühl, D., Briggs, G., Osborne, M., Laird, E., Ares, N.: Efficiently measuring a quantum device using machine learning. Npj Quantum Inf. 5(1), 1–8 (2019) Lennon, D., Moon, H., Camenzind, L., Yu, L., Zumbühl, D., Briggs, G., Osborne, M., Laird, E., Ares, N.: Efficiently measuring a quantum device using machine learning. Npj Quantum Inf. 5(1), 1–8 (2019)
25.
go back to reference Nautrup, H.P., Delfosse, N., Dunjko, V., Briegel, H.J., Friis, N.: Optimizing quantum error correction codes with reinforcement learning. Quantum 3, 215 (2019)CrossRef Nautrup, H.P., Delfosse, N., Dunjko, V., Briegel, H.J., Friis, N.: Optimizing quantum error correction codes with reinforcement learning. Quantum 3, 215 (2019)CrossRef
26.
go back to reference Baireuther, P., O’Brien, T.E., Tarasinski, B., Beenakker, C.W.: Machine-learning-assisted correction of correlated qubit errors in a topological code. Quantum 2, 48 (2018)CrossRef Baireuther, P., O’Brien, T.E., Tarasinski, B., Beenakker, C.W.: Machine-learning-assisted correction of correlated qubit errors in a topological code. Quantum 2, 48 (2018)CrossRef
27.
go back to reference Andreasson, P., Johansson, J., Liljestrand, S., Granath, M.: Quantum error correction for the toric code using deep reinforcement learning. Quantum 3, 183 (2019)CrossRef Andreasson, P., Johansson, J., Liljestrand, S., Granath, M.: Quantum error correction for the toric code using deep reinforcement learning. Quantum 3, 183 (2019)CrossRef
28.
go back to reference Kalantre, S.S., Zwolak, J.P., Ragole, S., Wu, X., Zimmerman, N.M., Stewart, M.D., Taylor, J.M.: Machine learning techniques for state recognition and auto-tuning in quantum dots. Npj Quantum Inf. 5(1), 1–10 (2019)ADSCrossRef Kalantre, S.S., Zwolak, J.P., Ragole, S., Wu, X., Zimmerman, N.M., Stewart, M.D., Taylor, J.M.: Machine learning techniques for state recognition and auto-tuning in quantum dots. Npj Quantum Inf. 5(1), 1–10 (2019)ADSCrossRef
29.
go back to reference Bukov, M., Day, A.G., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Reinforcement learning in different phases of quantum control. Phys. Rev. X 8(3), 031086 (2018) Bukov, M., Day, A.G., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Reinforcement learning in different phases of quantum control. Phys. Rev. X 8(3), 031086 (2018)
30.
go back to reference Niu, M.Y., Boixo, S., Smelyanskiy, V.N., Neven, H.: Universal quantum control through deep reinforcement learning. Npj Quantum Inf. 5(1), 1–8 (2019)CrossRef Niu, M.Y., Boixo, S., Smelyanskiy, V.N., Neven, H.: Universal quantum control through deep reinforcement learning. Npj Quantum Inf. 5(1), 1–8 (2019)CrossRef
31.
go back to reference Babukhin, D.V., Zhukov, A.A., Pogosov, W.V.: Nondestructive classification of quantum states using an algorithmic quantum computer. Quantum Mach. Intell. 1(3), 87–96 (2019)CrossRef Babukhin, D.V., Zhukov, A.A., Pogosov, W.V.: Nondestructive classification of quantum states using an algorithmic quantum computer. Quantum Mach. Intell. 1(3), 87–96 (2019)CrossRef
32.
go back to reference Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13(5), 431–434 (2017)CrossRef Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13(5), 431–434 (2017)CrossRef
33.
go back to reference Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)ADSCrossRef Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)ADSCrossRef
34.
go back to reference Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018)CrossRef Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018)CrossRef
35.
go back to reference Neugebauer, M., Fischer, L., Jäger, A., Czischek, S., Jochim, S., Weidemüller, M., Gärttner, M.: Neural-network quantum state tomography in a two-qubit experiment. Phys. Rev. A 102(4), 042604 (2020)ADSCrossRef Neugebauer, M., Fischer, L., Jäger, A., Czischek, S., Jochim, S., Weidemüller, M., Gärttner, M.: Neural-network quantum state tomography in a two-qubit experiment. Phys. Rev. A 102(4), 042604 (2020)ADSCrossRef
36.
go back to reference Lohani, S., Kirby, B.T., Brodsky, M., Danaci, O., Glasser, R.T.: Machine learning assisted quantum state estimation. Mach. Learn. Sci. Technol. 1(3), 035007 (2020)CrossRef Lohani, S., Kirby, B.T., Brodsky, M., Danaci, O., Glasser, R.T.: Machine learning assisted quantum state estimation. Mach. Learn. Sci. Technol. 1(3), 035007 (2020)CrossRef
37.
go back to reference Sehayek, D., Golubeva, A., Albergo, M.S., Kulchytskyy, B., Torlai, G., Melko, R.G.: Learnability scaling of quantum states: restricted Boltzmann machines. Phys. Rev. B 100(19), 195125 (2019)ADSCrossRef Sehayek, D., Golubeva, A., Albergo, M.S., Kulchytskyy, B., Torlai, G., Melko, R.G.: Learnability scaling of quantum states: restricted Boltzmann machines. Phys. Rev. B 100(19), 195125 (2019)ADSCrossRef
38.
go back to reference Palmieri, A.M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J.D., Kulik, S.: Experimental neural network enhanced quantum tomography. Npj Quantum Inf. 6(1), 20 (2020)ADSCrossRef Palmieri, A.M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J.D., Kulik, S.: Experimental neural network enhanced quantum tomography. Npj Quantum Inf. 6(1), 20 (2020)ADSCrossRef
39.
go back to reference Hashim, A., Seritan, S., Proctor, T., Rudinger, K., Goss, N., Naik, R.K., Kreikebaum, J.M., Santiago, D.I., Siddiqi, I.: Benchmarking quantum logic operations relative to thresholds for fault tolerance. Npj Quantum Inf. 9(1) (2023) Hashim, A., Seritan, S., Proctor, T., Rudinger, K., Goss, N., Naik, R.K., Kreikebaum, J.M., Santiago, D.I., Siddiqi, I.: Benchmarking quantum logic operations relative to thresholds for fault tolerance. Npj Quantum Inf. 9(1) (2023)
40.
go back to reference Zhukov, A.A., Kiktenko, E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Y.E.: Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Process. 18(1), 1–23 (2019)ADSCrossRef Zhukov, A.A., Kiktenko, E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Y.E.: Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Process. 18(1), 1–23 (2019)ADSCrossRef
41.
go back to reference Babukhin, D.V., Zhukov, A.A., Pogosov, W.V.: Hybrid digital-analog simulation of many-body dynamics with superconducting qubits. Phys. Rev. A 101, 052337 (2020)ADSCrossRef Babukhin, D.V., Zhukov, A.A., Pogosov, W.V.: Hybrid digital-analog simulation of many-body dynamics with superconducting qubits. Phys. Rev. A 101, 052337 (2020)ADSCrossRef
42.
go back to reference Ostmeyer, J.: Optimised trotter decompositions for classical and quantum computing. J. Phys. A Math. Theor. 56(28), 285303 (2023)ADSMathSciNetCrossRef Ostmeyer, J.: Optimised trotter decompositions for classical and quantum computing. J. Phys. A Math. Theor. 56(28), 285303 (2023)ADSMathSciNetCrossRef
43.
go back to reference Mc Keever, C., Lubasch, M.: Classically optimized Hamiltonian simulation. Phys. Rev. Res. 5, 023146 (2023)CrossRef Mc Keever, C., Lubasch, M.: Classically optimized Hamiltonian simulation. Phys. Rev. Res. 5, 023146 (2023)CrossRef
44.
go back to reference Genois, E., Gross, J.A., Di Paolo, A., Stevenson, N.J., Koolstra, G., Hashim, A., Siddiqi, I., Blais, A.: Quantum-tailored machine-learning characterization of a superconducting qubit. PRX Quantum 2, 040355 (2021)ADSCrossRef Genois, E., Gross, J.A., Di Paolo, A., Stevenson, N.J., Koolstra, G., Hashim, A., Siddiqi, I., Blais, A.: Quantum-tailored machine-learning characterization of a superconducting qubit. PRX Quantum 2, 040355 (2021)ADSCrossRef
Metadata
Title
Quantum error mitigation in the regime of high noise using deep neural network: Trotterized dynamics
Authors
Andrey Zhukov
Walter Pogosov
Publication date
01-03-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 3/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04296-y

Other articles of this Issue 3/2024

Quantum Information Processing 3/2024 Go to the issue