Skip to main content
Top
Published in: Designs, Codes and Cryptography 3/2017

28-09-2016

Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes

Authors: Lingfei Jin, Haibin Kan, Jie Wen

Published in: Designs, Codes and Cryptography | Issue 3/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It has become common knowledge that constructing q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\) is significantly more difficult than constructing those with minimum distance less than or equal to \(q/2+1\). Despite of various constructions of q-ary quantum MDS codes, all known q-ary quantum MDS codes have minimum distance bounded by \(q/2+1\) except for some lengths. The purpose of the current paper is to provide some new q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\). In this paper, we provide several classes of quantum MDS codes with minimum distance bigger than \(q/2+1\). For instance, some examples in these classes include q-ary \([n,n-2k, k+1]\)-quantum MDS codes for cases: (i) \(q\equiv -1\bmod {5}, n=(q^2+4)/5\) and \(1\le k\le (3q-2)/5\); (ii) \(q\equiv -1\bmod {7}, n=(q^2+6)/7\) and \(1\le k\le (4q-3)/7\); (iii) \(2|q, q\equiv -1\bmod {3}, n=2(q^2-1)/3\) and \(1\le k\le (2q-1)/3\); and (iv) \(2|q, q\equiv -1\bmod {5}, n=2(q^2-1)/5\) and \(1\le k\le (3q-2)/5\).
Literature
1.
3.
go back to reference Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRefMATH Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRefMATH
4.
go back to reference Chen B., Ling S., Zhang G.: “Apllication of constacyclic codes to quantum MDS codes”, exists. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015).CrossRefMATH Chen B., Ling S., Zhang G.: “Apllication of constacyclic codes to quantum MDS codes”, exists. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015).CrossRefMATH
5.
6.
go back to reference Feng K., Ling S., Xing C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006).MathSciNetCrossRefMATH Feng K., Ling S., Xing C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006).MathSciNetCrossRefMATH
7.
go back to reference Grassl M., Beth T., Röttler M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004).CrossRef Grassl M., Beth T., Röttler M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004).CrossRef
10.
go back to reference Jin L.F., Ling S., Luo J.Q., Xing C.P.: Application of classical Hermitian self-orthogonal MDS codes to Quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010).MathSciNetCrossRef Jin L.F., Ling S., Luo J.Q., Xing C.P.: Application of classical Hermitian self-orthogonal MDS codes to Quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010).MathSciNetCrossRef
11.
13.
go back to reference Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.: Nonbinary stablizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006).CrossRefMATH Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.: Nonbinary stablizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006).CrossRefMATH
14.
go back to reference Li Z., Xing L.J., Wang X.M.: Quantum generalized Reed-Solomon codes: unified framework for quantum MDS codes. Phys. Rev. A 77, 012308-1–012308-4 (2008). Li Z., Xing L.J., Wang X.M.: Quantum generalized Reed-Solomon codes: unified framework for quantum MDS codes. Phys. Rev. A 77, 012308-1–012308-4 (2008).
15.
go back to reference Li R., Xu Z.: Construction of \([[n,n-4,3]]_q\) quantum MDS codes for odd prime power \(q\). Phys. Rev. A 82, 052316-1–052316-4 (2010). Li R., Xu Z.: Construction of \([[n,n-4,3]]_q\) quantum MDS codes for odd prime power \(q\). Phys. Rev. A 82, 052316-1–052316-4 (2010).
16.
go back to reference Ling S., Xing C.P.: Coding Theory—A First Course. Cambridge University Press, Cambridge (2004).CrossRef Ling S., Xing C.P.: Coding Theory—A First Course. Cambridge University Press, Cambridge (2004).CrossRef
18.
go back to reference Röttler M., Grassl M. Beth,T.: On quantum MDS codes. In: Proceedings of the International Symposium on Information Thoory, Chicago, USA, pp. 356 (2004). Röttler M., Grassl M. Beth,T.: On quantum MDS codes. In: Proceedings of the International Symposium on Information Thoory, Chicago, USA, pp. 356 (2004).
19.
go back to reference Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995).CrossRef Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995).CrossRef
20.
21.
23.
go back to reference Zhang T., Ge G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 52240–52248 (2015).MathSciNetCrossRefMATH Zhang T., Ge G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 52240–52248 (2015).MathSciNetCrossRefMATH
Metadata
Title
Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes
Authors
Lingfei Jin
Haibin Kan
Jie Wen
Publication date
28-09-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 3/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0281-9

Other articles of this Issue 3/2017

Designs, Codes and Cryptography 3/2017 Go to the issue

Premium Partner