Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Raman Spectroscopy, Modeling and Simulation Studies of Carbon Nanotubes

Authors : Daniel Casimir, Raul Garcia-Sanchez, Prabhakar Misra

Published in: Applied Spectroscopy and the Science of Nanomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter focuses on two types of carbon nanotubes (CNTs): single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). CNTs are cylindrically-shaped carbon allotropes. They consist of a single layer of sp2-hybridized carbon atoms, giving it a hollow cylindrical shape. The majority of SWCNT samples have diameters on the order of ~1 nm and lengths on the order of microns to centimeters. MWCNTs are composed of concentric layers of SWCNTs nested inside one another, giving it a layered cylindrical shape. In the present chapter, we will provide a historical overview of CNTs and examine specifically their thermal properties as it relates to their applications to the semiconductor industry and nanoelectronics. The understanding of CNT chirality through the visualization of rolled-up graphene sheets will provide insight into the versatility and myriad thermo-mechanical and electrical properties of CNTs. We will focus on the use of Raman spectroscopy and Molecular Dynamics (MD) simulations to characterize and investigate the thermal characteristics of SWCNTs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Radushkevich LV, Lukyanovich VM (1952) Structure of the carbon produced in the thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem 26:88–95 Radushkevich LV, Lukyanovich VM (1952) Structure of the carbon produced in the thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem 26:88–95
2.
go back to reference Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRef Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRef
3.
go back to reference Abrahamson J, Wiles PG, Rhoades BL (1999) Structure of carbon fibers found on carbon arc anodes. Carbon 37(11): 1873 Abrahamson J, Wiles PG, Rhoades BL (1999) Structure of carbon fibers found on carbon arc anodes. Carbon 37(11): 1873
4.
go back to reference Nesterenko AM, Kolesnik NF, Akhmatov YuS, Suhomlin VI, Prilutskii OV (1982) Characteristics of the phase composition and structure of products of the interaction of nickel(II) and iron(III) oxide with carbon monoxide. Izevestiya Akadem ii Nauk, SSSR, Metals 3:12–17 Nesterenko AM, Kolesnik NF, Akhmatov YuS, Suhomlin VI, Prilutskii OV (1982) Characteristics of the phase composition and structure of products of the interaction of nickel(II) and iron(III) oxide with carbon monoxide. Izevestiya Akadem ii Nauk, SSSR, Metals 3:12–17
5.
go back to reference Tennent HG (1987) Carbon fibrils, method for producing the same and compositions containing same. US Patent No. 4663230, 1987-05-05 Tennent HG (1987) Carbon fibrils, method for producing the same and compositions containing same. US Patent No. 4663230, 1987-05-05
6.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
7.
go back to reference Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631CrossRef Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631CrossRef
8.
go back to reference Iijima S, Iohihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef Iijima S, Iohihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef
9.
go back to reference Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic—layer walls. Nature 363(6430):605–607CrossRef Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic—layer walls. Nature 363(6430):605–607CrossRef
10.
go back to reference Saito R, Dresselhauss G, Dresselhauss MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef Saito R, Dresselhauss G, Dresselhauss MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef
11.
go back to reference Kwon YK, Berber S, Tomanek D (2004) Thermal contraction of carbon fullerenes and nanotubes. Phys Rev Lett 92:015901CrossRef Kwon YK, Berber S, Tomanek D (2004) Thermal contraction of carbon fullerenes and nanotubes. Phys Rev Lett 92:015901CrossRef
12.
go back to reference Li C, Chan TW (2005) Axial and radial thermal expansions of single-walled carbon nanotubes. Phys Rev B 71:235414CrossRef Li C, Chan TW (2005) Axial and radial thermal expansions of single-walled carbon nanotubes. Phys Rev B 71:235414CrossRef
13.
go back to reference Wong P, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, Cambridge Wong P, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, Cambridge
14.
go back to reference Thess et al (1996) Crystalline ropes of metallic carbon Nanotubes. Science 273(5274):483–487CrossRef Thess et al (1996) Crystalline ropes of metallic carbon Nanotubes. Science 273(5274):483–487CrossRef
16.
go back to reference Misra P, Casimir D, Garcia-Sanchez R (2013) Thermal expansion properties of single-walled carbon nanotubes by raman spectroscopy at 780 nm wavelength. OPAP 2013 proceedings Misra P, Casimir D, Garcia-Sanchez R (2013) Thermal expansion properties of single-walled carbon nanotubes by raman spectroscopy at 780 nm wavelength. OPAP 2013 proceedings
17.
go back to reference O’Connell MJ, Sivaram S, Doorn SK (2004) Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: a direct comparison of bundled and individually dispersed HiPco nanotubes. Phys Rev B 69:235415CrossRef O’Connell MJ, Sivaram S, Doorn SK (2004) Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: a direct comparison of bundled and individually dispersed HiPco nanotubes. Phys Rev B 69:235415CrossRef
19.
go back to reference Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814CrossRef Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814CrossRef
20.
go back to reference Gregan E (2009) The use of raman spectroscopy in the characterization of single walled carbon nanotubes. Doctoral Dissertation, Dublin Institute of Technology, School of Physics Gregan E (2009) The use of raman spectroscopy in the characterization of single walled carbon nanotubes. Doctoral Dissertation, Dublin Institute of Technology, School of Physics
21.
go back to reference Jorio A, Saito R, Dresselhauss G, Dresselhauss MS (2011) Raman spectroscopy in graphene related systems. Wiley-VCH Verlag GmbH and Co, KGaA, Weinheim, GermanyCrossRef Jorio A, Saito R, Dresselhauss G, Dresselhauss MS (2011) Raman spectroscopy in graphene related systems. Wiley-VCH Verlag GmbH and Co, KGaA, Weinheim, GermanyCrossRef
22.
go back to reference Deng L, Young RJ, Kinloch IA, Sun R, Zhang G, Noe L, Monthioux M (2014) Coefficient of thermal expansion of carbon nanotubes measured by raman spectroscopy. Appl Phys Lett 104:051907CrossRef Deng L, Young RJ, Kinloch IA, Sun R, Zhang G, Noe L, Monthioux M (2014) Coefficient of thermal expansion of carbon nanotubes measured by raman spectroscopy. Appl Phys Lett 104:051907CrossRef
23.
go back to reference Raravikar et al (2002) Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys Rev B 66:235424-1–235424-9 Raravikar et al (2002) Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys Rev B 66:235424-1–235424-9
24.
go back to reference Terekhov SV, Obraztsova ED, Detltlaff-Weglikowska U, Roth S, Calibration of raman-based method for estimation of carbon nanotube purity. AIP Conf Proc 685:116 Terekhov SV, Obraztsova ED, Detltlaff-Weglikowska U, Roth S, Calibration of raman-based method for estimation of carbon nanotube purity. AIP Conf Proc 685:116
25.
go back to reference Robertson DH, Brenner DW, Mintmire JW (1992) Progress on mechanics of carbon nanotubes and derived materials. Phys Rev B 45:12592CrossRef Robertson DH, Brenner DW, Mintmire JW (1992) Progress on mechanics of carbon nanotubes and derived materials. Phys Rev B 45:12592CrossRef
26.
go back to reference Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472CrossRef Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472CrossRef
27.
go back to reference Bialoskorski M, Rybicki J (2012) Mechanical properties of single-walled carbon nanotubes simulated with airebo force-field. Comp Meth Sci Tech 18(2):67–77CrossRef Bialoskorski M, Rybicki J (2012) Mechanical properties of single-walled carbon nanotubes simulated with airebo force-field. Comp Meth Sci Tech 18(2):67–77CrossRef
28.
go back to reference Cao G, Chen X, Kysar JW (2005) Apparent thermal contraction of single-walled carbon nanotubes. Phys Rev B 72:235404CrossRef Cao G, Chen X, Kysar JW (2005) Apparent thermal contraction of single-walled carbon nanotubes. Phys Rev B 72:235404CrossRef
29.
go back to reference Jorio A, Dresselhauss G, Dresselhauss MS (eds) (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin Jorio A, Dresselhauss G, Dresselhauss MS (eds) (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin
30.
go back to reference Rao CNR, Subrahmanyan KS, Ramakrishna Matte HSS, Govindraj A (2011) Graphene: synthesis, functionalization and properties. Mod Phy Lett 25(7):427–451CrossRef Rao CNR, Subrahmanyan KS, Ramakrishna Matte HSS, Govindraj A (2011) Graphene: synthesis, functionalization and properties. Mod Phy Lett 25(7):427–451CrossRef
31.
go back to reference Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV (2012) The specific heat and the radial thermal expansion of bundles of single-walled carbon nanotubes. Fiz Nizk Temp 38(6):667–673 Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV (2012) The specific heat and the radial thermal expansion of bundles of single-walled carbon nanotubes. Fiz Nizk Temp 38(6):667–673
Metadata
Title
Raman Spectroscopy, Modeling and Simulation Studies of Carbon Nanotubes
Authors
Daniel Casimir
Raul Garcia-Sanchez
Prabhakar Misra
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-242-5_1

Premium Partners