Skip to main content
Top
Published in: Journal of Materials Science 14/2017

21-04-2017 | Energy materials

Randomly oriented Ni–P/nanofiber/nanotube composite prepared by electrolessly plated nickel–phosphorus alloys for fuel cell applications

Authors: Xin Wu, Zhen Liu, Yangcheng Jiang, Jianhuang Zeng, Shijun Liao

Published in: Journal of Materials Science | Issue 14/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we have synthesized a new type of hybridized composites, Ni–P/CNT–CNFs, which refers to carbon nanotube (CNT)—hybridized carbon nanofibers (CNFs) through electrolessly plated nickel–phosphorus (Ni–P) alloys. The composites combine the merits of CNTs with high electronic conductivity and CNFs with abundant defect sites via the junction of electrolessly deposited Ni–P. The materials have been extensively characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller (BET), thermogravimetric analysis and hydrophilicity analysis. Electrochemical evaluations for oxygen reduction reaction (ORR) are carried out in 0.1 M KOH with and without 1 M methanol. In addition to serving as desirable candidates as electrocatalyst supports, the randomly oriented hybridized composites show satisfactory activities to ORR and excellent methanol tolerance in alkaline solutions. This generalized method is applicable for the preparation of a broad range of composite materials with different active components simply by variations in electroless plating bath (for example, copper\cobalt or bimetallic plating).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal 2:864–890CrossRef Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal 2:864–890CrossRef
2.
go back to reference Huang XQ, Zhao ZP, Cao L, Chen Y, Zhu EB, Lin ZT, Li MF, Yan AM, Zettl A, Wang YM, Duan XF, Mueller T, Huang Y (2015) High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234CrossRef Huang XQ, Zhao ZP, Cao L, Chen Y, Zhu EB, Lin ZT, Li MF, Yan AM, Zettl A, Wang YM, Duan XF, Mueller T, Huang Y (2015) High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234CrossRef
3.
go back to reference Guo L, Jiang WJ, Zhang Y, Hu JS, Wei ZD, Wan LJ (2015) Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal 5:2903–2909CrossRef Guo L, Jiang WJ, Zhang Y, Hu JS, Wei ZD, Wan LJ (2015) Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal 5:2903–2909CrossRef
4.
go back to reference Piela B, Olson TS, Atanassov P, Zelenay P (2010) Highly methanol-tolerant non-precious metal cathode catalysts for direct methanol fuel cell. Electrochim Acta 55:7615–7621CrossRef Piela B, Olson TS, Atanassov P, Zelenay P (2010) Highly methanol-tolerant non-precious metal cathode catalysts for direct methanol fuel cell. Electrochim Acta 55:7615–7621CrossRef
5.
go back to reference Cheng QQ, Wang YL, Jiang JJ, Zou Z, Zhou Y, Fang JH, Yang HJ (2015) Shape-controlled porous heterogeneous PtRu/C/Nafion microspheres enabling high performance direct methanol fuel cells. J Mater Chem A 3:15177–15183CrossRef Cheng QQ, Wang YL, Jiang JJ, Zou Z, Zhou Y, Fang JH, Yang HJ (2015) Shape-controlled porous heterogeneous PtRu/C/Nafion microspheres enabling high performance direct methanol fuel cells. J Mater Chem A 3:15177–15183CrossRef
6.
go back to reference Fu G, Wu K, Lin J, Tang Y, Chen Y, Zhou Y, Lu T (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826–9834CrossRef Fu G, Wu K, Lin J, Tang Y, Chen Y, Zhou Y, Lu T (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826–9834CrossRef
7.
go back to reference Liao MY, Wang YL, Chen GQ, Zhou H, Li YH, Zhong CJ, Chen BH (2014) Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure. J Power Sources 257:45–51CrossRef Liao MY, Wang YL, Chen GQ, Zhou H, Li YH, Zhong CJ, Chen BH (2014) Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure. J Power Sources 257:45–51CrossRef
8.
go back to reference Alia SM, Jensen KO, Pivovar BS, Yan Y (2012) Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts. ACS Catal 2:858–863CrossRef Alia SM, Jensen KO, Pivovar BS, Yan Y (2012) Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts. ACS Catal 2:858–863CrossRef
9.
go back to reference Dang D, Zou HB, Xiong ZA, Hou SY, Shu T, Nan HX, Zeng XY, Zeng JH, Liao SJ (2015) High-Performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a Pt shell layer on carbon-supported Pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach. ACS Catal 5:4318–4324CrossRef Dang D, Zou HB, Xiong ZA, Hou SY, Shu T, Nan HX, Zeng XY, Zeng JH, Liao SJ (2015) High-Performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a Pt shell layer on carbon-supported Pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach. ACS Catal 5:4318–4324CrossRef
10.
go back to reference Zheng YY, Zhan HT, Fang YX, Zeng JH, Liu H, Yang J, Liao SJ (2017) Uniformly dispersed carbon-supported bimetallic ruthenium–platinum electrocatalysts for the methanol oxidation reaction. J Mater Sci 52:3457–3466. doi:10.1007/s10853-016-0635-8 CrossRef Zheng YY, Zhan HT, Fang YX, Zeng JH, Liu H, Yang J, Liao SJ (2017) Uniformly dispersed carbon-supported bimetallic ruthenium–platinum electrocatalysts for the methanol oxidation reaction. J Mater Sci 52:3457–3466. doi:10.​1007/​s10853-016-0635-8 CrossRef
11.
go back to reference Zhong GY, Wang HJ, Yu H, Peng F (2015) Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J Power Sources 286:495–503CrossRef Zhong GY, Wang HJ, Yu H, Peng F (2015) Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J Power Sources 286:495–503CrossRef
12.
go back to reference Yang LJ, Larouche N, Chenitz R, Zhang GX, Lefèvre M, Dodelet JP (2015) Activity, performance, and durability for the reduction of oxygen in PEM fuel cells, of Fe/N/C electrocatalysts obtained from the pyrolysis of metal-organic-framework and iron porphyrin precursors. Electrochim Acta 159:184–197CrossRef Yang LJ, Larouche N, Chenitz R, Zhang GX, Lefèvre M, Dodelet JP (2015) Activity, performance, and durability for the reduction of oxygen in PEM fuel cells, of Fe/N/C electrocatalysts obtained from the pyrolysis of metal-organic-framework and iron porphyrin precursors. Electrochim Acta 159:184–197CrossRef
13.
go back to reference Gu LZ, Jiang LH, Jin JJ, Liu J, Sun GQ (2015) Yolk–shell structured iron carbide/N-doped carbon composite as highly efficient and stable oxygen reduction reaction electrocatalyst. Carbon 82:572–578CrossRef Gu LZ, Jiang LH, Jin JJ, Liu J, Sun GQ (2015) Yolk–shell structured iron carbide/N-doped carbon composite as highly efficient and stable oxygen reduction reaction electrocatalyst. Carbon 82:572–578CrossRef
14.
go back to reference Kolla P, Lai CL, Mishra S, Fong H, Rhine W, Smirnova A (2014) CVD grown CNTs within iron modified and graphitized carbon aerogel as durable oxygen reduction catalysts in acidic medium. Carbon 79:518–528CrossRef Kolla P, Lai CL, Mishra S, Fong H, Rhine W, Smirnova A (2014) CVD grown CNTs within iron modified and graphitized carbon aerogel as durable oxygen reduction catalysts in acidic medium. Carbon 79:518–528CrossRef
15.
go back to reference Wang CD, Jiang J, Zhou XL, Wang WL, Zuo J, Yang Q (2015) Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production. J Power Sources 286:464–469CrossRef Wang CD, Jiang J, Zhou XL, Wang WL, Zuo J, Yang Q (2015) Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production. J Power Sources 286:464–469CrossRef
16.
go back to reference Park JC, Park SH, Chung MW, Choi CH, Kho BK, Woo SI (2015) Optimization of catalyst layer composition for PEMFC using graphene-based oxygen reduction reaction catalysts. J Power Sources 286:166–174CrossRef Park JC, Park SH, Chung MW, Choi CH, Kho BK, Woo SI (2015) Optimization of catalyst layer composition for PEMFC using graphene-based oxygen reduction reaction catalysts. J Power Sources 286:166–174CrossRef
17.
go back to reference Zhang J, Wu SY, Chen X, Pan M, Mu SC (2014) Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction. J Power Sources 271:522–529CrossRef Zhang J, Wu SY, Chen X, Pan M, Mu SC (2014) Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction. J Power Sources 271:522–529CrossRef
18.
go back to reference Liu HY, Zhu XF, Li MB, Tang QW, Sun GQ, Yang WS (2014) Single crystal (Mn, Co)3O4 octahedra for highly efficient oxygen reduction reactions. Electrochim Acta 144:31–41CrossRef Liu HY, Zhu XF, Li MB, Tang QW, Sun GQ, Yang WS (2014) Single crystal (Mn, Co)3O4 octahedra for highly efficient oxygen reduction reactions. Electrochim Acta 144:31–41CrossRef
19.
go back to reference Yi QF, Zhang YH, Liu XP, Xiang BL, Yang YH (2014) Fe/Co/C–N nanocatalysts for oxygen reduction reaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline. J Mater Sci 49:729–736. doi:10.1007/s10853-013-7754-2 CrossRef Yi QF, Zhang YH, Liu XP, Xiang BL, Yang YH (2014) Fe/Co/C–N nanocatalysts for oxygen reduction reaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline. J Mater Sci 49:729–736. doi:10.​1007/​s10853-013-7754-2 CrossRef
20.
go back to reference Huang JJ, Zhu NW, Yang TT, Zhang TP, Wu PX, Dang Z (2015) Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosen Bioelectron 72:332–339CrossRef Huang JJ, Zhu NW, Yang TT, Zhang TP, Wu PX, Dang Z (2015) Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosen Bioelectron 72:332–339CrossRef
21.
go back to reference Zhu JL, He GQ, Liang LZ, Wan Q, Shen PK (2015) Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim Acta 158:374–382CrossRef Zhu JL, He GQ, Liang LZ, Wan Q, Shen PK (2015) Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim Acta 158:374–382CrossRef
22.
go back to reference Song P, Bo XJ, Nsabimana A, Guo LP (2014) Additional doping of phosphorus into polypyrrole functionalized nitrogenous carbon nanotubes as novel metal-free oxygen reduction electrocatalyst in alkaline solution. Int J Hydrogen Energy 39:15464–15473CrossRef Song P, Bo XJ, Nsabimana A, Guo LP (2014) Additional doping of phosphorus into polypyrrole functionalized nitrogenous carbon nanotubes as novel metal-free oxygen reduction electrocatalyst in alkaline solution. Int J Hydrogen Energy 39:15464–15473CrossRef
23.
go back to reference Goubert R, Stephanie NS, Wieckowski A (2011) Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. J Electroanal Chem 652:44–51CrossRef Goubert R, Stephanie NS, Wieckowski A (2011) Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. J Electroanal Chem 652:44–51CrossRef
24.
go back to reference Ma YT, Li H, Wang H, Ji S, Linkov V, Wang RF (2014) Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J Power Sources 259:87–91CrossRef Ma YT, Li H, Wang H, Ji S, Linkov V, Wang RF (2014) Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J Power Sources 259:87–91CrossRef
25.
go back to reference von Deak D, Biddinger EJ, Luthman KA, Ozkan US (2010) The effect of phosphorus in nitrogen-containing carbon nanostructures on oxygen reduction in PEM fuel cells. Carbon 48:3637–3639CrossRef von Deak D, Biddinger EJ, Luthman KA, Ozkan US (2010) The effect of phosphorus in nitrogen-containing carbon nanostructures on oxygen reduction in PEM fuel cells. Carbon 48:3637–3639CrossRef
26.
go back to reference Savych I, Bernard d’Arbigny J, Subianto S, Cavaliere S, Jones DJ, Rozière J (2014) On the effect of non-carbon nanostructured supports on the stability of Pt nanoparticles during voltage cycling: a study of TiO2 nanofibres. J Power Sources 257:147–155CrossRef Savych I, Bernard d’Arbigny J, Subianto S, Cavaliere S, Jones DJ, Rozière J (2014) On the effect of non-carbon nanostructured supports on the stability of Pt nanoparticles during voltage cycling: a study of TiO2 nanofibres. J Power Sources 257:147–155CrossRef
27.
go back to reference Nakagawa N, Ito Y, Tsujiguchi T, Ishitobi H (2014) Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles. J Power Sources 248:330–336CrossRef Nakagawa N, Ito Y, Tsujiguchi T, Ishitobi H (2014) Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles. J Power Sources 248:330–336CrossRef
28.
go back to reference Stamatin SN, Borghei M, Dhiman R, Andersen SM, Ruiz V, Kauppinen E, Skou EM (2015) Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts. Appl Catal B Environ 162:289–299CrossRef Stamatin SN, Borghei M, Dhiman R, Andersen SM, Ruiz V, Kauppinen E, Skou EM (2015) Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts. Appl Catal B Environ 162:289–299CrossRef
29.
go back to reference Gong J, Liu J, Jiang ZW, Feng JD, Chen XC, Wang L, Mijowska E, Wen X, Tang T (2014) Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Appl Catal B Environ 147:592–601CrossRef Gong J, Liu J, Jiang ZW, Feng JD, Chen XC, Wang L, Mijowska E, Wen X, Tang T (2014) Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Appl Catal B Environ 147:592–601CrossRef
30.
go back to reference Du S, Lu Y, Malladi SK, Xu Q, Steinberger-Wilckens R (2014) A simple approach for PtNi-MWCNT hybrid nanostructures as high performance electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:692–698CrossRef Du S, Lu Y, Malladi SK, Xu Q, Steinberger-Wilckens R (2014) A simple approach for PtNi-MWCNT hybrid nanostructures as high performance electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:692–698CrossRef
31.
go back to reference Li MW, Wu X, Zeng JH, Hou ZH, Liao SJ (2015) Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells. Electrochim Acta 182:351–360CrossRef Li MW, Wu X, Zeng JH, Hou ZH, Liao SJ (2015) Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells. Electrochim Acta 182:351–360CrossRef
32.
go back to reference Cui ZT, Wang SG, Zhang YH, Cao MH (2014) Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction. J Power Sources 272:808–815CrossRef Cui ZT, Wang SG, Zhang YH, Cao MH (2014) Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction. J Power Sources 272:808–815CrossRef
33.
go back to reference Youn DH, Bae G, Han S, Kim JY, Jang JW, Park H, Choi SH, Lee JS (2013) A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support. J Mater Chem A 1:8007–8015CrossRef Youn DH, Bae G, Han S, Kim JY, Jang JW, Park H, Choi SH, Lee JS (2013) A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support. J Mater Chem A 1:8007–8015CrossRef
34.
go back to reference Sebastian D, Alegre C, Galvez ME, Moliner R, Lazaro MJ, Arico AS, Baglio V (2014) Towards new generation fuel cell electrocatalysts based on xerogel-nanofiber carbon composites. J Mater Chem A 2:13713–13722CrossRef Sebastian D, Alegre C, Galvez ME, Moliner R, Lazaro MJ, Arico AS, Baglio V (2014) Towards new generation fuel cell electrocatalysts based on xerogel-nanofiber carbon composites. J Mater Chem A 2:13713–13722CrossRef
35.
go back to reference Kuo PL, Hsu CH, Li WT, Jhan JY, Chen WF (2010) Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells. J Power Sources 195:7983–7990CrossRef Kuo PL, Hsu CH, Li WT, Jhan JY, Chen WF (2010) Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells. J Power Sources 195:7983–7990CrossRef
36.
go back to reference Wu X, Liu Z, Zeng JH, Hou ZH, Zhou WY, Liao SJ (2017) Platinum nanoparticles on interconnected Ni3P/carbon nanotube-carbon nanofiber hybrid supports with enhanced catalytic activity for fuel cells. ChemElectroChem 4:109–114CrossRef Wu X, Liu Z, Zeng JH, Hou ZH, Zhou WY, Liao SJ (2017) Platinum nanoparticles on interconnected Ni3P/carbon nanotube-carbon nanofiber hybrid supports with enhanced catalytic activity for fuel cells. ChemElectroChem 4:109–114CrossRef
37.
go back to reference Wang F, Arai S, Endo M (2005) The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon 43:1716–1721CrossRef Wang F, Arai S, Endo M (2005) The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon 43:1716–1721CrossRef
38.
go back to reference Zhang Y, Qi SH, Zhang F (2012) Preparation and characterization of multi-walled carbon nanotubes with nickel-phosphorous layers of high magnetic properties. Mater Res Bull 47:3743–3746CrossRef Zhang Y, Qi SH, Zhang F (2012) Preparation and characterization of multi-walled carbon nanotubes with nickel-phosphorous layers of high magnetic properties. Mater Res Bull 47:3743–3746CrossRef
39.
go back to reference Yang J, Lee JY, Deivaraj TC, Too HP (2004) Preparation and characterization of positively charged ruthenium nanoparticles. J Colloid Interf Sci 271:308–312CrossRef Yang J, Lee JY, Deivaraj TC, Too HP (2004) Preparation and characterization of positively charged ruthenium nanoparticles. J Colloid Interf Sci 271:308–312CrossRef
40.
go back to reference Jarrah NA, Li F, Van Ommen JG, Lefferts L (2005) Immobilization of a layer of carbon nanofibres (CNFs) on Ni foam: a new structured catalyst support. J Mater Chem 15:1946–1953CrossRef Jarrah NA, Li F, Van Ommen JG, Lefferts L (2005) Immobilization of a layer of carbon nanofibres (CNFs) on Ni foam: a new structured catalyst support. J Mater Chem 15:1946–1953CrossRef
41.
go back to reference Lin JD, Kuo CL, Hsia CJ (2013) The influence of microwave-assisted hydrogen plasma treatment on electroless Ni–P coatings. Mater Chem Phys 137:848–858CrossRef Lin JD, Kuo CL, Hsia CJ (2013) The influence of microwave-assisted hydrogen plasma treatment on electroless Ni–P coatings. Mater Chem Phys 137:848–858CrossRef
42.
go back to reference Xiang JY, Wang XL, Zhong J, Zhang D, Tu JP (2011) Enhanced rate capability of multi-layered ordered porous nickel phosphide film as anode for lithium ion batteries. J Power Sources 196:379–385CrossRef Xiang JY, Wang XL, Zhong J, Zhang D, Tu JP (2011) Enhanced rate capability of multi-layered ordered porous nickel phosphide film as anode for lithium ion batteries. J Power Sources 196:379–385CrossRef
43.
go back to reference Yang WB, Luo SK, Zhang BJ, Huang Z, Tang XH (2008) Electroless preparation and characterization of magnetic Ni–P plating on polyurethane foam. Appl Surf Sci 254:7427–7430CrossRef Yang WB, Luo SK, Zhang BJ, Huang Z, Tang XH (2008) Electroless preparation and characterization of magnetic Ni–P plating on polyurethane foam. Appl Surf Sci 254:7427–7430CrossRef
44.
go back to reference Zeng JH, Lee JY, Chen JJ, Shen PK, Song SQ (2007) Increased metal utilization in carbon-supported Pt catalysts by adsorption of preformed Pt nanoparticles on colloidal silica. Fuel Cells 7:285–290CrossRef Zeng JH, Lee JY, Chen JJ, Shen PK, Song SQ (2007) Increased metal utilization in carbon-supported Pt catalysts by adsorption of preformed Pt nanoparticles on colloidal silica. Fuel Cells 7:285–290CrossRef
45.
go back to reference Wu DF, Cheng D (2015) Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Electrochim Acta 180:316–322CrossRef Wu DF, Cheng D (2015) Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Electrochim Acta 180:316–322CrossRef
46.
go back to reference Guo QH, Zhao D, Liu SW, Chen SL, Hanif M, Hou HQ (2014) Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim Acta 138:318–324CrossRef Guo QH, Zhao D, Liu SW, Chen SL, Hanif M, Hou HQ (2014) Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim Acta 138:318–324CrossRef
Metadata
Title
Randomly oriented Ni–P/nanofiber/nanotube composite prepared by electrolessly plated nickel–phosphorus alloys for fuel cell applications
Authors
Xin Wu
Zhen Liu
Yangcheng Jiang
Jianhuang Zeng
Shijun Liao
Publication date
21-04-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1094-6

Other articles of this Issue 14/2017

Journal of Materials Science 14/2017 Go to the issue

Premium Partners