Skip to main content
Top
Published in: Journal of Materials Science 22/2019

13-08-2019 | Energy materials

Raney-platinum thin film electrodes for the catalysis of glucose in abiotically catalyzed micro-glucose fuel cells

Authors: Uyen P. Do, Frode Seland, Kaiying Wang, Erik A. Johannessen

Published in: Journal of Materials Science | Issue 22/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fuel cells capable of synthetic glucose catalysis have revolved around the implementation of abiotic catalysts that require extreme acid and alkaline environments. These are not compatible with implantable medical sensor systems, and hence, there is a need to develop abiotic catalysts that operate at neutral pH. This paper presents structural and electrochemical characteristics of a nanoporous electrode designed for abiotic glucose oxidation in the presence of oxygen in neutral physiological media. The electrode was fabricated by annealing e-beam deposited thin films of platinum (Pt) and nickel (Ni) into a Pt–Ni alloy on a silicon substrate. The porous nature of the alloy enhances electrochemical properties by increasing the real surface area ~ 500 times compared to the geometric surface area of as-prepared multilayer thin films. This was reflected in the exchange current density of the electrode annealed at 800 °C being twice that of the electrode annealed at 650 °C. The cell voltage increase, due to the addition of dissolved physiological oxygen of 2 ppm, was about 100 ± 8 mV under a load current density of 2 µA cm−2. After running for 72 h in a physiological saline solution with 5 mM glucose, the increase in the electrode potential was only 23 µV h−1. These results suggest that the nanoporous Pt–Ni alloy anode offers an improved catalytic stability with time and should be a viable candidate for use in abiotic catalyzed glucose fuel cell systems operating under physiological conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Larsson B et al (2003) Lessons from the first patient with an implanted pacemaker: 1958–2001. PACE 26:114–124CrossRef Larsson B et al (2003) Lessons from the first patient with an implanted pacemaker: 1958–2001. PACE 26:114–124CrossRef
2.
go back to reference Grayson ACR et al (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92(1):6–21CrossRef Grayson ACR et al (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92(1):6–21CrossRef
3.
go back to reference Wise KD et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97CrossRef Wise KD et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97CrossRef
4.
go back to reference Desai TA et al (1998) Implantation of microfabricated immunoisolating biocapsules. In: proceedings of SPIE, micro- and nanofabricated structures and devices for biomedical environmental applications, vol. 3258, pp. 40–47. International Society for Optics and Photonics Desai TA et al (1998) Implantation of microfabricated immunoisolating biocapsules. In: proceedings of SPIE, micro- and nanofabricated structures and devices for biomedical environmental applications, vol. 3258, pp. 40–47. International Society for Optics and Photonics
5.
go back to reference Sbiaa Z (2006) MEMS fabricated chip for an implantable drug delivery device. In: 2006 International conference of the IEEE engineering in medicine and biology society Sbiaa Z (2006) MEMS fabricated chip for an implantable drug delivery device. In: 2006 International conference of the IEEE engineering in medicine and biology society
6.
go back to reference Birchall J (2006) Microfabricated microneedles for drug and gene delivery to skin. In: 2006 2nd IET seminar on micro/nanotechnology in medicine Birchall J (2006) Microfabricated microneedles for drug and gene delivery to skin. In: 2006 2nd IET seminar on micro/nanotechnology in medicine
7.
go back to reference Grant SA et al (2001) In vitro and in vivo measurements of ®ber optic and electrochemical sensors to monitor brain tissue pH. Sens Actuators B Chem 72:174–179CrossRef Grant SA et al (2001) In vitro and in vivo measurements of ®ber optic and electrochemical sensors to monitor brain tissue pH. Sens Actuators B Chem 72:174–179CrossRef
8.
go back to reference Ziaie B, Najafi K (2001) An implantable microsystem for tonometric blood pressure measurement. Biomed Microdevice 3(4):285–292CrossRef Ziaie B, Najafi K (2001) An implantable microsystem for tonometric blood pressure measurement. Biomed Microdevice 3(4):285–292CrossRef
9.
go back to reference Krushinitskaya O et al (2009) Novel osmotic sensor for a continuous implantable blood-sugar reader. In: 6th International workshop on wearable, micro, and nano technologies for personalized health (pHealth). IEEE, Oslo Krushinitskaya O et al (2009) Novel osmotic sensor for a continuous implantable blood-sugar reader. In: 6th International workshop on wearable, micro, and nano technologies for personalized health (pHealth). IEEE, Oslo
10.
go back to reference Yang Y, Wei XJ, Liu J (2007) Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D Appl Phys 40(18):5790–5800CrossRef Yang Y, Wei XJ, Liu J (2007) Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D Appl Phys 40(18):5790–5800CrossRef
11.
go back to reference Lay-Ekuakille A et al (2009) Thermoelectric generator design based on power from body heat for biomedical autonomous devices. In: IEEE international workshop on medical measurements and applications, 2009. MeMeA 2009, pp 1–4 Lay-Ekuakille A et al (2009) Thermoelectric generator design based on power from body heat for biomedical autonomous devices. In: IEEE international workshop on medical measurements and applications, 2009. MeMeA 2009, pp 1–4
12.
go back to reference Mitcheson PD et al (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486CrossRef Mitcheson PD et al (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486CrossRef
13.
go back to reference Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175–R195CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175–R195CrossRef
14.
go back to reference Nielsen ME et al (2008) Sustainable energy from deep ocean cold seeps. Energy Environ Sci 1(5):584–593CrossRef Nielsen ME et al (2008) Sustainable energy from deep ocean cold seeps. Energy Environ Sci 1(5):584–593CrossRef
15.
go back to reference Holmes DE et al (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48(2):178–190CrossRef Holmes DE et al (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48(2):178–190CrossRef
16.
go back to reference Ivanov I, Vidakovic-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3(4):803–846CrossRef Ivanov I, Vidakovic-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3(4):803–846CrossRef
17.
go back to reference Wang H-Y et al (2011) Micro-sized microbial fuel cell: a mini-review. Biores Technol 102(1):235–243CrossRef Wang H-Y et al (2011) Micro-sized microbial fuel cell: a mini-review. Biores Technol 102(1):235–243CrossRef
18.
go back to reference Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332CrossRef Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332CrossRef
19.
go back to reference Kerzenmacher S et al (2008) Energy harvesting by implantable abiotically catalysed glucose fuel cells. J Power Sources 182:1–17CrossRef Kerzenmacher S et al (2008) Energy harvesting by implantable abiotically catalysed glucose fuel cells. J Power Sources 182:1–17CrossRef
20.
go back to reference Kerzenmacher S et al (2011) A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J Power Sources 196(3):1264–1272CrossRef Kerzenmacher S et al (2011) A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J Power Sources 196(3):1264–1272CrossRef
21.
go back to reference Kerzenmacher S et al (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182(1):66–75CrossRef Kerzenmacher S et al (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182(1):66–75CrossRef
22.
go back to reference Bagotzky VS, Vasilyev YB (1964) Some characteristics of oxidation reactions of organic compounds on platinum electrodes. Electrochim Acta 9(7):869–882CrossRef Bagotzky VS, Vasilyev YB (1964) Some characteristics of oxidation reactions of organic compounds on platinum electrodes. Electrochim Acta 9(7):869–882CrossRef
23.
go back to reference Brouzgou A, Tsiakaras P (2015) Electrocatalysts for glucose electrooxidation reaction: a review. Top Catal 58(18):1311–1327CrossRef Brouzgou A, Tsiakaras P (2015) Electrocatalysts for glucose electrooxidation reaction: a review. Top Catal 58(18):1311–1327CrossRef
24.
go back to reference Adzic RR, Hsiao MW, Yeager EB (1989) Electrochemical oxidation of glucose on single crystal gold surfaces. J Electroanal Chem Interfacial Electrochem 260(2):475–485CrossRef Adzic RR, Hsiao MW, Yeager EB (1989) Electrochemical oxidation of glucose on single crystal gold surfaces. J Electroanal Chem Interfacial Electrochem 260(2):475–485CrossRef
25.
go back to reference Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43(2):119–136CrossRef Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43(2):119–136CrossRef
26.
go back to reference Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. J Electroanal Chem Interfacial Electrochem 257(1):9–45CrossRef Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. J Electroanal Chem Interfacial Electrochem 257(1):9–45CrossRef
27.
go back to reference Kerzenmacher S et al (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: nickel-free glucose oxidation anodes. J Power Sources 195(19):6516–6523CrossRef Kerzenmacher S et al (2010) Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: nickel-free glucose oxidation anodes. J Power Sources 195(19):6516–6523CrossRef
28.
go back to reference Gebhardt U, Rao JR, Richter GJ (1976) A special type of Raney-alloy catalyst used in compact biofuel cells. J Appl Electrochem 6(2):127–134CrossRef Gebhardt U, Rao JR, Richter GJ (1976) A special type of Raney-alloy catalyst used in compact biofuel cells. J Appl Electrochem 6(2):127–134CrossRef
29.
go back to reference Oncescu V, Erickson D (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J Power Sources 196(22):9169–9175CrossRef Oncescu V, Erickson D (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J Power Sources 196(22):9169–9175CrossRef
30.
go back to reference Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS ONE 7(6):e38436CrossRef Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS ONE 7(6):e38436CrossRef
31.
go back to reference Sree Harsha KS (2006) Principles of vapor deposition of thin films, 1st edn. Elsevier Science, Oxford, p 1176 Sree Harsha KS (2006) Principles of vapor deposition of thin films, 1st edn. Elsevier Science, Oxford, p 1176
33.
go back to reference Lukaszewski M, Soszko M, Czerwinski A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11(6):4442–4469CrossRef Lukaszewski M, Soszko M, Czerwinski A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11(6):4442–4469CrossRef
34.
go back to reference Rudi S et al (2014) Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by H-upd and CO-stripping voltammetry. Electrocatalysis 5(4):408–418CrossRef Rudi S et al (2014) Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by H-upd and CO-stripping voltammetry. Electrocatalysis 5(4):408–418CrossRef
35.
go back to reference Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327(1):353–376CrossRef Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327(1):353–376CrossRef
36.
go back to reference Doyle RL et al (2013) Non-enzymatic glucose oxidation at electrocatalytic metal oxide films. ECS Trans 53(16):1–15CrossRef Doyle RL et al (2013) Non-enzymatic glucose oxidation at electrocatalytic metal oxide films. ECS Trans 53(16):1–15CrossRef
37.
go back to reference Pasta M et al (2011) Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. J Power Sources 196(3):1273–1278CrossRef Pasta M et al (2011) Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. J Power Sources 196(3):1273–1278CrossRef
38.
go back to reference Ernst S, Heitbaum J, Hamann CH (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. Reactivity and kinetics below 350 mV/RHE. J Electroanal Chem Interfacial Electrochem 100(1):173–183CrossRef Ernst S, Heitbaum J, Hamann CH (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. Reactivity and kinetics below 350 mV/RHE. J Electroanal Chem Interfacial Electrochem 100(1):173–183CrossRef
39.
go back to reference Bevington PR, Robinson DK (1969) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw Hill, New York Bevington PR, Robinson DK (1969) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw Hill, New York
40.
go back to reference Brug GJ et al (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176(1):275–295CrossRef Brug GJ et al (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176(1):275–295CrossRef
41.
go back to reference Sreemany M, Sen S (2006) Effect of substrate temperature and annealing temperature on the structural, electrical and microstructural properties of thin Pt films by rf magnetron sputtering. Appl Surf Sci 253(5):2739–2746CrossRef Sreemany M, Sen S (2006) Effect of substrate temperature and annealing temperature on the structural, electrical and microstructural properties of thin Pt films by rf magnetron sputtering. Appl Surf Sci 253(5):2739–2746CrossRef
42.
go back to reference Derkach V et al (2014) Grain boundary migration and grooving in thin 3-D systems. Acta Mater 65:194–206CrossRef Derkach V et al (2014) Grain boundary migration and grooving in thin 3-D systems. Acta Mater 65:194–206CrossRef
43.
go back to reference Génin FY, Mullins WW, Wynblatt P (1993) The effect of stress on grain boundary grooving. Acta Metall Mater 41(12):3541–3547CrossRef Génin FY, Mullins WW, Wynblatt P (1993) The effect of stress on grain boundary grooving. Acta Metall Mater 41(12):3541–3547CrossRef
44.
go back to reference Morrison ART, Hosseiny SS, Wüthrich R (2016) Platinum-like oxidation of nickel surfaces by rapidly switching voltage to generate highly active bifunctional catalysts. Electrochem Commun 67:22–25CrossRef Morrison ART, Hosseiny SS, Wüthrich R (2016) Platinum-like oxidation of nickel surfaces by rapidly switching voltage to generate highly active bifunctional catalysts. Electrochem Commun 67:22–25CrossRef
45.
go back to reference Fu TR et al (2014) Total hemispherical radiation properties of oxidized nickel at high temperatures. Corros Sci 83:272–280CrossRef Fu TR et al (2014) Total hemispherical radiation properties of oxidized nickel at high temperatures. Corros Sci 83:272–280CrossRef
46.
go back to reference Hudak EM, Mortimer JT, Martin HB (2010) Platinum for neural stimulation: voltammetry considerations. J Neural Eng 7(2):026005CrossRef Hudak EM, Mortimer JT, Martin HB (2010) Platinum for neural stimulation: voltammetry considerations. J Neural Eng 7(2):026005CrossRef
47.
go back to reference Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10(1):275–309CrossRef Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10(1):275–309CrossRef
48.
go back to reference Robblee LS, Rose TL (1990) The electrochemistry of electrical stimulation. In: Annual international conference of the IEEE engineering in medicine and biology society, vol 12, p 1479 Robblee LS, Rose TL (1990) The electrochemistry of electrical stimulation. In: Annual international conference of the IEEE engineering in medicine and biology society, vol 12, p 1479
49.
go back to reference Alsabet M, Grden M, Jerkiewicz G (2015) Electrochemical growth of surface oxides on nickel. Part 3: formation of beta-NiOOH in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 6(1):60–71CrossRef Alsabet M, Grden M, Jerkiewicz G (2015) Electrochemical growth of surface oxides on nickel. Part 3: formation of beta-NiOOH in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 6(1):60–71CrossRef
50.
go back to reference Mahshid SS et al (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555CrossRef Mahshid SS et al (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555CrossRef
51.
go back to reference Mahshid SS et al (2012) Preparation of pulse deposited Pt/Ni nanowires electrode for glucose detection in alkaline solution. Int J Theor Appl Nanotechnol 1(1):66–72 Mahshid SS et al (2012) Preparation of pulse deposited Pt/Ni nanowires electrode for glucose detection in alkaline solution. Int J Theor Appl Nanotechnol 1(1):66–72
52.
go back to reference Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for nickel at 25–300 °C. Corros Sci 39(5):969–980CrossRef Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for nickel at 25–300 °C. Corros Sci 39(5):969–980CrossRef
53.
go back to reference Bolzan AE, Iwasita T, Vielstich W (1987) On the electrochemical oxidation of glucose: identification of volatile products by on-line mass spectroscopy. J Electrochem Soc 134(12):3052–3058CrossRef Bolzan AE, Iwasita T, Vielstich W (1987) On the electrochemical oxidation of glucose: identification of volatile products by on-line mass spectroscopy. J Electrochem Soc 134(12):3052–3058CrossRef
54.
go back to reference Rao JR et al (1976) The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem Bioenergy 3(1):139–150CrossRef Rao JR et al (1976) The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem Bioenergy 3(1):139–150CrossRef
55.
go back to reference Ernst S, Heitbaum J, Hamann CH (1980) The electrooxidation of glucose in phosphate buffer solutions: kintetics and reaction mechanism. Ber Bunsenges Phys Chem 84(1):50–55CrossRef Ernst S, Heitbaum J, Hamann CH (1980) The electrooxidation of glucose in phosphate buffer solutions: kintetics and reaction mechanism. Ber Bunsenges Phys Chem 84(1):50–55CrossRef
56.
go back to reference de Mele MFL, Videla HA, Arvia AJ (1982) Potentiodynamic study of glucose electro-oxidation at bright platinum electrodes. J Electrochem Soc 129:2207–2213CrossRef de Mele MFL, Videla HA, Arvia AJ (1982) Potentiodynamic study of glucose electro-oxidation at bright platinum electrodes. J Electrochem Soc 129:2207–2213CrossRef
57.
go back to reference Yan X, Ge X, Cui S (2011) Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res Lett 6(1):1–6CrossRef Yan X, Ge X, Cui S (2011) Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res Lett 6(1):1–6CrossRef
58.
go back to reference Becerik I, Ficicioglu F, Kadirgan F (1999) Effect of temperature on the electrochemical oxidation of some organic molecules on Pt doped conducting polymer coated electrodes. Turk J Chem 23:353–360 Becerik I, Ficicioglu F, Kadirgan F (1999) Effect of temperature on the electrochemical oxidation of some organic molecules on Pt doped conducting polymer coated electrodes. Turk J Chem 23:353–360
59.
go back to reference Habrioux A et al (2007) Activity of platinum–gold alloys for glucose electrooxidation in biofuel cells. J Phys Chem B 111(34):10329–10333CrossRef Habrioux A et al (2007) Activity of platinum–gold alloys for glucose electrooxidation in biofuel cells. J Phys Chem B 111(34):10329–10333CrossRef
60.
go back to reference Zahner (2013) Thales manual. In: Thales 04: SIM—simulation and fitting Zahner (2013) Thales manual. In: Thales 04: SIM—simulation and fitting
61.
go back to reference Vassilyev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum. J Electroanal Chem Interfacial Electrochem 196(1):105–125CrossRef Vassilyev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum. J Electroanal Chem Interfacial Electrochem 196(1):105–125CrossRef
62.
go back to reference de Mele MFL, Videla HA, Arvía AJ (1983) The electrooxidation of glucose on platinum electrodes in buffered media. Bioelectrochem Bioenergy 10(2):239–249CrossRef de Mele MFL, Videla HA, Arvía AJ (1983) The electrooxidation of glucose on platinum electrodes in buffered media. Bioelectrochem Bioenergy 10(2):239–249CrossRef
63.
go back to reference Pajkossy T, Kolb DM (2001) Double layer capacitance of Pt(111) single crystal electrodes. Electrochim Acta 46(20):3063–3071CrossRef Pajkossy T, Kolb DM (2001) Double layer capacitance of Pt(111) single crystal electrodes. Electrochim Acta 46(20):3063–3071CrossRef
64.
go back to reference Pell WG, Zolfaghari A, Conway BE (2002) Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film. J Electroanal Chem 532(1):13–23CrossRef Pell WG, Zolfaghari A, Conway BE (2002) Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film. J Electroanal Chem 532(1):13–23CrossRef
65.
go back to reference Rosen M, Flinn DR, Schuldiner S (1969) Double layer capacitance on platinum in 1 M H2SO4 from the reversible hydrogen potential to the oxygen formation region. J Electrochem Soc 116(8):1112–1116CrossRef Rosen M, Flinn DR, Schuldiner S (1969) Double layer capacitance on platinum in 1 M H2SO4 from the reversible hydrogen potential to the oxygen formation region. J Electrochem Soc 116(8):1112–1116CrossRef
66.
go back to reference Lam CM (2000) Glucose oxidation on different electrocatalysis: mechanism and sensor applications. The University of Hong Kong, Hong Kong Lam CM (2000) Glucose oxidation on different electrocatalysis: mechanism and sensor applications. The University of Hong Kong, Hong Kong
67.
go back to reference Chen C-C, Chen L-C (2015) Synthesis and characterization of Pd–Ni core–shell nanocatalysts for alkaline glucose electrooxidation. RSC Adv 5:53333–53339CrossRef Chen C-C, Chen L-C (2015) Synthesis and characterization of Pd–Ni core–shell nanocatalysts for alkaline glucose electrooxidation. RSC Adv 5:53333–53339CrossRef
Metadata
Title
Raney-platinum thin film electrodes for the catalysis of glucose in abiotically catalyzed micro-glucose fuel cells
Authors
Uyen P. Do
Frode Seland
Kaiying Wang
Erik A. Johannessen
Publication date
13-08-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03907-9

Other articles of this Issue 22/2019

Journal of Materials Science 22/2019 Go to the issue

Premium Partners