Skip to main content
Top
Published in: Journal of Materials Science 5/2019

13-11-2018 | Energy materials

Rapid microwave-irradiation synthesis of ZnCo2O4/ZnO nanocrystals/carbon nanotubes composite as anodes for high-performance lithium-ion battery

Authors: Ping Huang, Miao Zhang, Jinwei Kang, Huagui Feng, Qingmei Su, Gaohui Du, Yuan Yu, Bingshe Xu

Published in: Journal of Materials Science | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ZnCo2O4/ZnO/carbon nanotubes (ZZCO/CNTs) nanocomposite is fabricated via a facile and rapid strategy of microwave-irradiation process followed by annealing. The nanocomposites are composed of ZnCo2O4/ZnO (ZZCO) nanocrystals (~ 5 nm) coated on the surfaces of carbon nanotubes, and the introduction of carbon nanotubes can greatly improve the conductivity and stability of the hybrid material and effectively prevent the aggregation of ZZCO nanoparticles. When considered as an anode material for lithium-ion batteries, the as-synthesized ZZCO/CNTs nanocomposite exhibits a high-reversible specific capacity of around 1440 mAh g−1 at the current density of 100 mA g−1, excellent cycling stability up to 200 cycles at a high current density of 500 mA g−1 and superior rate performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ge X, Li Z, Wang C, Yin L (2015) Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:26633–26642CrossRef Ge X, Li Z, Wang C, Yin L (2015) Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:26633–26642CrossRef
2.
go back to reference Su QM, Xie D, Zhang J, Du GH, Xu BS (2013) In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/Graphene anode during lithiation-delithiation processes. ACS Nano 7:9115–9121CrossRef Su QM, Xie D, Zhang J, Du GH, Xu BS (2013) In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/Graphene anode during lithiation-delithiation processes. ACS Nano 7:9115–9121CrossRef
4.
go back to reference Bai J, Wang K, Feng J, Xiong S (2015) ZnO/CoO and ZnCo2O4 hierarchical bipyramid nanoframes: morphology control, formation mechanism, and their lithium storage properties. ACS Appl Mater Interfaces 7:22848–22857CrossRef Bai J, Wang K, Feng J, Xiong S (2015) ZnO/CoO and ZnCo2O4 hierarchical bipyramid nanoframes: morphology control, formation mechanism, and their lithium storage properties. ACS Appl Mater Interfaces 7:22848–22857CrossRef
5.
go back to reference Bai W, Tong H, Gao Z, Yue S, Xing S, Dong S, Shen L, He J, Zhang X, Liang Y (2015) Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J Mater Chem A 3:21891–21898CrossRef Bai W, Tong H, Gao Z, Yue S, Xing S, Dong S, Shen L, He J, Zhang X, Liang Y (2015) Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J Mater Chem A 3:21891–21898CrossRef
6.
go back to reference Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175–1502194CrossRef Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175–1502194CrossRef
7.
go back to reference Song X, Ru Q, Mo Y, Hu S, An B (2014) A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 606:219–225CrossRef Song X, Ru Q, Mo Y, Hu S, An B (2014) A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 606:219–225CrossRef
8.
go back to reference Ru Q, Song X, Mo Y, Guo L, Hu S (2016) Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J Alloys Compd 654:586–592CrossRef Ru Q, Song X, Mo Y, Guo L, Hu S (2016) Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J Alloys Compd 654:586–592CrossRef
9.
go back to reference Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522CrossRef Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522CrossRef
10.
go back to reference Yuan J, Chen C, Hao Y, Zhang X, Gao S, Agrawal R, Wang C, Xiong Z, Yu H, Xie Y (2017) A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158–162CrossRef Yuan J, Chen C, Hao Y, Zhang X, Gao S, Agrawal R, Wang C, Xiong Z, Yu H, Xie Y (2017) A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158–162CrossRef
11.
go back to reference Yao L, Su Q, Xiao Y, Huang M, Li H, Deng H, Du G (2017) Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties. J Nanopart Res 19:261CrossRef Yao L, Su Q, Xiao Y, Huang M, Li H, Deng H, Du G (2017) Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties. J Nanopart Res 19:261CrossRef
12.
go back to reference Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916CrossRef Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916CrossRef
13.
go back to reference Chen C, K-H Lam, Liu B-J, Hou X-H, Wu Y-P (2017) Chemical integration of reduced graphene oxide sheets encapsulated ZnCo2O4 quantum dots achieving excellent capacity storage for lithium-ion batteries. Electrochim Acta 245:672–684CrossRef Chen C, K-H Lam, Liu B-J, Hou X-H, Wu Y-P (2017) Chemical integration of reduced graphene oxide sheets encapsulated ZnCo2O4 quantum dots achieving excellent capacity storage for lithium-ion batteries. Electrochim Acta 245:672–684CrossRef
14.
go back to reference Wang W-W (2008) Microwave-induced polyol-process synthesis of (MFe2O4)-Fe-II (M = Mn, Co) nanoparticles and magnetic property. Mater Chem Phys 108:227–231CrossRef Wang W-W (2008) Microwave-induced polyol-process synthesis of (MFe2O4)-Fe-II (M = Mn, Co) nanoparticles and magnetic property. Mater Chem Phys 108:227–231CrossRef
15.
go back to reference Song X-Z, Qiao L, Sun K-M, Tan Z, Ma W, Kang X-L, Sun F-F, Huang T, Wang X-F (2018) Triple-shelled ZnO/ZnFe2O4 heterojunctional hollow microspheres derived from Prussian Blue analogue as high-performance acetone sensors. Sens Actuators B Chem 256:374–382CrossRef Song X-Z, Qiao L, Sun K-M, Tan Z, Ma W, Kang X-L, Sun F-F, Huang T, Wang X-F (2018) Triple-shelled ZnO/ZnFe2O4 heterojunctional hollow microspheres derived from Prussian Blue analogue as high-performance acetone sensors. Sens Actuators B Chem 256:374–382CrossRef
16.
go back to reference Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736CrossRef Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736CrossRef
17.
go back to reference Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6:14827–14835CrossRef Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6:14827–14835CrossRef
18.
go back to reference Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455CrossRef Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455CrossRef
19.
go back to reference Liu ZQ, Cheng H, Li N, Ma TY, Su YZ (2016) ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv Mater 28:3777–3784CrossRef Liu ZQ, Cheng H, Li N, Ma TY, Su YZ (2016) ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv Mater 28:3777–3784CrossRef
20.
go back to reference Adams RA, Pol VG, Varma A (2017) Tailored solution combustion synthesis of high performance ZnCo2O4 anode materials for lithium-ion batteries. Ind Eng Chem Res 56:7173–7183CrossRef Adams RA, Pol VG, Varma A (2017) Tailored solution combustion synthesis of high performance ZnCo2O4 anode materials for lithium-ion batteries. Ind Eng Chem Res 56:7173–7183CrossRef
21.
go back to reference Du N, Xu Y, Zhang H, Yu J, Zhai C, Yang D (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324CrossRef Du N, Xu Y, Zhang H, Yu J, Zhai C, Yang D (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324CrossRef
22.
go back to reference Pascu O, Carenza E, Gich M, Estradé S, Peiró F, Herranz G, Roig A (2012) Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis, comparison with the thermal decomposition route. J Phys Chem C 116:15108–15116CrossRef Pascu O, Carenza E, Gich M, Estradé S, Peiró F, Herranz G, Roig A (2012) Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis, comparison with the thermal decomposition route. J Phys Chem C 116:15108–15116CrossRef
23.
go back to reference Dziedzic RM, Gillian-Daniel AL, Petersen GM, Martínez-Hernández KJ (2014) Microwave synthesis of zinc hydroxy sulfate nanoplates and zinc oxide nanorods in the classroom. J Chem Educ 91:1710–1714CrossRef Dziedzic RM, Gillian-Daniel AL, Petersen GM, Martínez-Hernández KJ (2014) Microwave synthesis of zinc hydroxy sulfate nanoplates and zinc oxide nanorods in the classroom. J Chem Educ 91:1710–1714CrossRef
24.
go back to reference Opembe NN, King’ondu CK, Espinal AE, Chen C-H, Nyutu EK, Crisostomo VM, Suib SL (2010) Microwave-assisted synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanomaterials under continuous flow conditions. J Phys Chem C 114:14417–14426CrossRef Opembe NN, King’ondu CK, Espinal AE, Chen C-H, Nyutu EK, Crisostomo VM, Suib SL (2010) Microwave-assisted synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanomaterials under continuous flow conditions. J Phys Chem C 114:14417–14426CrossRef
25.
go back to reference Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374CrossRef Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374CrossRef
26.
go back to reference Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134:15849–15857CrossRef Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134:15849–15857CrossRef
27.
go back to reference Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981CrossRef Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981CrossRef
28.
go back to reference Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105CrossRef Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105CrossRef
29.
go back to reference Shen L, Yu L, Yu X-Y, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54:1868–1872CrossRef Shen L, Yu L, Yu X-Y, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54:1868–1872CrossRef
30.
go back to reference Ding E, Li A, Liu H, Liu W, Chen F, Li T, Wang B (2018) Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo2O4 (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale 10:3871–3876CrossRef Ding E, Li A, Liu H, Liu W, Chen F, Li T, Wang B (2018) Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo2O4 (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale 10:3871–3876CrossRef
31.
go back to reference Zhao Y, Li Z, Lv Z, Liang X, Min J, Wang L, Shi Y (2010) A new phase and optical properties of the N-doped ZnO film. Mater Res Bull 45:1046–1050CrossRef Zhao Y, Li Z, Lv Z, Liang X, Min J, Wang L, Shi Y (2010) A new phase and optical properties of the N-doped ZnO film. Mater Res Bull 45:1046–1050CrossRef
32.
go back to reference Costa S, Borowiak-Palen E, Kruszyńska M, Bachmatiuk A, Kaleńczuk RJ (2008) Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland 26:433–441 Costa S, Borowiak-Palen E, Kruszyńska M, Bachmatiuk A, Kaleńczuk RJ (2008) Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland 26:433–441
33.
go back to reference Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10:751–758CrossRef Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10:751–758CrossRef
34.
go back to reference Jiang F, Su QM, Li HJ, Yao LB, Deng HH, Du GH (2017) Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. Chem Eng J 314:301–310CrossRef Jiang F, Su QM, Li HJ, Yao LB, Deng HH, Du GH (2017) Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. Chem Eng J 314:301–310CrossRef
35.
go back to reference Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550CrossRef Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550CrossRef
36.
go back to reference Zhang K, Gao X, Zhang Q, Li T, Chen H, Chen X (2017) Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J Alloys Compd 721:268–275CrossRef Zhang K, Gao X, Zhang Q, Li T, Chen H, Chen X (2017) Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J Alloys Compd 721:268–275CrossRef
37.
go back to reference Mary AJC, Bose AC (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211CrossRef Mary AJC, Bose AC (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211CrossRef
38.
go back to reference Kim JG, Kim Y, Noh Y, Kim WB (2014) Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties. RSC Adv 4:27714CrossRef Kim JG, Kim Y, Noh Y, Kim WB (2014) Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties. RSC Adv 4:27714CrossRef
39.
go back to reference Venkatachalam V, Alsalme A, Alswieleh A, Jayavel R (2017) Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J 321:474–483CrossRef Venkatachalam V, Alsalme A, Alswieleh A, Jayavel R (2017) Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J 321:474–483CrossRef
40.
go back to reference Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020CrossRef Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020CrossRef
41.
go back to reference Liu Y, Jiang H, Hao J, Liu Y, Shen H, Li W, Li J (2017) Metal-organic framework derived reduced graphene oxide supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum-O2 batteries. ACS Appl Mater Interfaces 9:31841–31852CrossRef Liu Y, Jiang H, Hao J, Liu Y, Shen H, Li W, Li J (2017) Metal-organic framework derived reduced graphene oxide supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum-O2 batteries. ACS Appl Mater Interfaces 9:31841–31852CrossRef
42.
go back to reference Lu L, Xu S, Luo Z, Wang S, Li G, Feng C (2016) Synthesis of ZnCo2O4 microspheres with Zn0.33Co0.67CO3 precursor and their electrochemical performance. J Nanopart Res 18:183CrossRef Lu L, Xu S, Luo Z, Wang S, Li G, Feng C (2016) Synthesis of ZnCo2O4 microspheres with Zn0.33Co0.67CO3 precursor and their electrochemical performance. J Nanopart Res 18:183CrossRef
43.
go back to reference Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2 graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRef Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2 graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRef
44.
go back to reference Zhao N, Wu S, He C, Wang Z, Shi C, Liu E, Li J (2013) One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. Carbon 57:130–138CrossRef Zhao N, Wu S, He C, Wang Z, Shi C, Liu E, Li J (2013) One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. Carbon 57:130–138CrossRef
45.
go back to reference Yao W, Dai Y, Ge K, Luo J, Shi Q, Xu J (2016) Strongly coupled hybrid ZnCo2O4 quantum dots/reduced graphene oxide with high-performance lithium storage capability. Electrochim Acta 210:783–791CrossRef Yao W, Dai Y, Ge K, Luo J, Shi Q, Xu J (2016) Strongly coupled hybrid ZnCo2O4 quantum dots/reduced graphene oxide with high-performance lithium storage capability. Electrochim Acta 210:783–791CrossRef
46.
go back to reference Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRef Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRef
47.
go back to reference Huang G, Li Q, Yin D, Wang L (2017) Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@Metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 27:1604941CrossRef Huang G, Li Q, Yin D, Wang L (2017) Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@Metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 27:1604941CrossRef
48.
go back to reference Rai AK, Trang VuT, Paul BJ, Kim J (2014) Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets as an anode material for secondary lithium ion batteries. Electrochim Acta 146:577–584CrossRef Rai AK, Trang VuT, Paul BJ, Kim J (2014) Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets as an anode material for secondary lithium ion batteries. Electrochim Acta 146:577–584CrossRef
49.
go back to reference Hou X, Bai S, Xue S, Shang X, Fu Y, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597CrossRef Hou X, Bai S, Xue S, Shang X, Fu Y, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597CrossRef
50.
go back to reference Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef
51.
go back to reference Wang X, Fan Y, Agung Susantyoko R, Xiao Q, Sun L, He D, Zhang Q (2014) High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy 5:91–96CrossRef Wang X, Fan Y, Agung Susantyoko R, Xiao Q, Sun L, He D, Zhang Q (2014) High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy 5:91–96CrossRef
52.
go back to reference Wang Z, Luan D, Madhavi S, Hu Y, Lou XW (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256CrossRef Wang Z, Luan D, Madhavi S, Hu Y, Lou XW (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256CrossRef
53.
go back to reference Qiao L, Wang X, Qiao L, Sun X, Li X, Zheng Y, He D (2013) Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5:3037–3042CrossRef Qiao L, Wang X, Qiao L, Sun X, Li X, Zheng Y, He D (2013) Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5:3037–3042CrossRef
54.
go back to reference Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire Electrodes for Electrochemical Energy Storage Devices. Chem Rev 114:11828–11862CrossRef Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire Electrodes for Electrochemical Energy Storage Devices. Chem Rev 114:11828–11862CrossRef
55.
go back to reference Yao LB, Deng HH, Huang Q-A, Su QM, Du XM, Du GH (2017) Facile synthesis of CoFe2O4 quantum dots/N-doped graphene composite with enhanced lithium-storage performance. J Alloys Compd 693:929–935CrossRef Yao LB, Deng HH, Huang Q-A, Su QM, Du XM, Du GH (2017) Facile synthesis of CoFe2O4 quantum dots/N-doped graphene composite with enhanced lithium-storage performance. J Alloys Compd 693:929–935CrossRef
56.
go back to reference Kundu M, Ng CCA, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49:8459–8461CrossRef Kundu M, Ng CCA, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49:8459–8461CrossRef
57.
go back to reference Su L, Zhou Z, Qin X, Tang Q, Wu D, Shen P (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282CrossRef Su L, Zhou Z, Qin X, Tang Q, Wu D, Shen P (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282CrossRef
58.
go back to reference Su Q, Du G, Zhang J, Zhong Y, Xu B, Yang Y, Neupane S, Kadel K, Li W (2013) In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes. ACS Nano 7:11379–11387CrossRef Su Q, Du G, Zhang J, Zhong Y, Xu B, Yang Y, Neupane S, Kadel K, Li W (2013) In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes. ACS Nano 7:11379–11387CrossRef
59.
go back to reference Xu J-S, Zhu Y-J (2012) Monodisperse Fe3O4 and gamma-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 4:4752–4757CrossRef Xu J-S, Zhu Y-J (2012) Monodisperse Fe3O4 and gamma-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 4:4752–4757CrossRef
61.
go back to reference Xu J, He L, Wang Y, Zhang C, Zhang Y (2016) Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries. Electrochim Acta 191:417–425CrossRef Xu J, He L, Wang Y, Zhang C, Zhang Y (2016) Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries. Electrochim Acta 191:417–425CrossRef
62.
go back to reference Zhang Y, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59CrossRef Zhang Y, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59CrossRef
63.
go back to reference Shi W, Zhao H, Lu B (2017) Core-shell ZnCo2O4@TiO2 nanowall arrays as anodes for lithium ion batteries. Nanotechnology 28:165403CrossRef Shi W, Zhao H, Lu B (2017) Core-shell ZnCo2O4@TiO2 nanowall arrays as anodes for lithium ion batteries. Nanotechnology 28:165403CrossRef
Metadata
Title
Rapid microwave-irradiation synthesis of ZnCo2O4/ZnO nanocrystals/carbon nanotubes composite as anodes for high-performance lithium-ion battery
Authors
Ping Huang
Miao Zhang
Jinwei Kang
Huagui Feng
Qingmei Su
Gaohui Du
Yuan Yu
Bingshe Xu
Publication date
13-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3119-1

Other articles of this Issue 5/2019

Journal of Materials Science 5/2019 Go to the issue

Premium Partners