Skip to main content
Top
Published in: Journal of Big Data 1/2021

Open Access 01-12-2021 | Research

Rating prediction of peer-to-peer accommodation through attributes and topics from customer review

Authors: Athor Subroto, Marcel Christianis

Published in: Journal of Big Data | Issue 1/2021

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to predict customers’ behavior in classifying their reviews as high rated or low rated using associated attributes and topics found in the review. Knowing customer reviewing action better can lead to a successful strategy implementation of the relevant parties related to this study such as policy to manage customer reviews by keeping their satisfaction high. We applied a big data approach on a dataset of 55,377 reviews from Airbnb listings in the top 10 most visited cities in Indonesia (based on foreign arrivals data). We used The Classification and Regression Tree Model, Random Forest Model, Least Absolute Shrinkage and Selection Operation and Logistic Regression Model, Artificial Neural Network as well as Multi-Layer Perceptron to make prediction’s classification. Those models are used to identify a set of attributes and topics that will increase the chance of the review to render a high rate and a different set of attributes and topics that will lead the review to be low rated. This study found; first, attributes and topics that influence customers' odds to classify their review as high rated or low rated adhere to the understanding of Peer to Peer accommodation attributes. Second, successfully proved that customer reviews' attributes and topics could be used to predict the classification of ratings in Peer to Peer accommodation. Where for Topics, we can predict the rating using Random Forest yields 60.09% accuracy, slightly better than Artificial Neural Network (58.33%) and Multi-Layer Perceptron (58.8%). However, it seems better to use Attributes to predict the rating, where the accuracy is yielded better by applying Artificial Neural Network with 84.79% accuracy compared to Multi-Layer Perceptron with only 72.35% of accuracy.
Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abbreviations
ANN
Artificial neural network
CART
Classification and regression tree
CP
Complexity parameter
CSL
Cost-sensitive learning
DGRU
Dual-gated recurrent unit
DTM
Document Term feature Matrix
LASSO
Least Absolute Shrinkage and Selection Operator
MLP
Multi-layer preceptron
MSE
Mean square error
OCRs
Online customer reviews
P2P
Peer to peer
SMOTE
Synthetic minority oversampling technique

Introduction

Peer-to-peer (P2P) is an emerging model in the tourism industry that has changed and disrupted the way consumers choose accommodation. P2P is a component of a bigger movement known as the “Sharing Economic,” where consumers share and offer underutilized assets to other consumers [1]. P2P accommodation has established itself as a viable alternative to the traditional accommodation model and has driven away significant market share in the accommodation industry [2]. This study will focus on Airbnb, a dominant P2P accommodation platform used across the globe. Albeit recent, the peer-to-peer accommodation model has grown at an unprecedented speed, which causes an understanding of the model to lag behind the phenomenon that is taking action in the industry. As such, many cast the understanding and perspective of traditional accommodation in order to make sense of how P2P accommodation works and the driving forces behind the decision making process of P2P accommodations’ customers [3]. Yet, there is no denying that P2P accommodation must be viewed as a separate model and a fresh perspective.
Several prior studies have attempted to identify a separate set of attributes that exclusively describe P2P accommodation without being anchored to traditional accommodation perspectives. Previous research identified a new set of attributes that are commonly found in P2P accommodation and able to describe the nuanced aspects of the Airbnb experiences that are not found in traditional accommodation [4, 5]. Bridges and Vásquez have looked into how languages are used and contrasted in positive and negative customer reviews by Airbnb customers [6]. However, existing studies mainly focus on identifying by breaking down customer reviews but have yet to look further into the role of these attributes and how they can predict customer behaviors in term of giving final rating.
Given the importance of P2P accommodation attributes in understanding customers’ decisions, this study sees the opportunity to fill the gap of how customers’ behavior can be predicted based on the attributes they use in writing reviews. The study employs a Big Data approach by creating a predictive model on attributes extracted from a large set of Airbnb customer reviews. The Big Data's significance to this study is that the view coming from the millions of customers is considerably frank by their own willingness to share that reflects the user experiences. Thus, Big Data can offer the real like situation and robustness of the data. The studies build on top of the research by [6] by predicting customer behavior in classifying their review as high rated or low rated based on the usage of attributes as previously identified by [4, 5]. The studies will use an array of classification predictive models such as Classification and Regression Tree (CART) Model, Random Forest (RF), Least Absolute Shrinkage and Selection Operation (LASSO) Logistic Regression, Artificial Neural Network (ANN), and Multi-Layer Perceptron (MLP) to perform classification prediction. The study contributes to the P2P accommodation literature by providing a case of understanding how customers behave through reviews that they wrote. The study also contributes methodologically by showing the feasibility of creating a predictive model using attributes and topics identified from the texts' collection.

Literature review

Sharing economy and peer-to-peer accommodation

Reviews on the peer to peer accommodation have been conducted by some researchers [79], mostly using Airbnb related data [1013] and through the sharing economy [14, 15]. The sharing economy refers to a global phenomenon with rapid growth potential [16]. That is where consumers are sharing and granting each other temporary access to their privately owned goods. In other words, asset owners utilize digital clearinghouses to make the most out of the unused capacity of things that people possess [17]. This behavior is supercharged and enabled by online marketplaces that act as intermediaries between consumers. Usually, the property consumers offer are underutilized physical assets and can be provided to other consumers for monetary benefits [18]. Among the existing sharing economy model, peer-to-peer accommodation has emerged as a significant segment of the sharing economy that has impacted the tourism industry [19, 20]. One research argues that P2P accommodation may be a form of evolution in the accommodation offerings market due to hotels’ inability to meet the needs and habits of their guests. Thus, most of its users consider it as a hotel substitute [21], although during weekends and holidays [22]. Those needs are predominantly in the dimensions of uncertainty, localness, communities, and personalization [23]. As well as because of the needs around modern internet technologies, distinct appeal, which centers on cost-savings, household amenities, and the potential for more authentic local experiences [24].
P2P accommodation has several distinct differences in comparison to traditional hotels. In the sharing economy model of P2P accommodation, neither supplier nor consumer is affiliated with the platform that enables the transactions. The platform simply facilitates the discovery process and mediates transactions. That contrasts with how traditional hotels work where customers will transact with an established entity that manages the accommodation service [18]. The most significant and most noticeable difference with the sharing economy model is the aspect of risk. Unlike hotels, P2P accommodation has a lack of standards and operating procedures dependent on each host's capabilities. In the traditional hotel model, there is a clear definition of the standards that are reflected in the hotel’s brand, operating procedures, price, and experience.
Meanwhile, in P2P accommodation, these attributes vary from one accommodation to another. Since customers cannot immediately judge the accommodation's quality, there is a degree of caution behind choosing accommodation in the peer-to-peer model. This caution is mitigated by the review system that platforms enforced with the interest of establishing trust between hosts and potential future guests [18]. However, the guest's reviews could give challenges to the Airbnb host, such as risk, lack of privacy, and emotional stress [25].

Peer-to-peer accommodation attributes and topics

The human element is a crucial characteristic of P2P accommodation that fundamentally change how accommodation is perceived. The human element rooted in the behavior of people renting out their property to guests creates an authentic experience with the property host that conventional hotels can’t replicate [5]. In understanding how P2P accommodation is perceived, previous research has attempted to find what attributes and aspects of P2P accommodation that guests care about. A study finds that service quality associated with the website, host, and facility can produce distinctive customer satisfaction effects [26]. According to [27], Airbnb and hotels' critical differences are reflected mainly through a wide variety of distinctive and similar attributes. The key differences include bringing pets and the opportunity to encounter hosts’ pets, atmosphere, flexibility, value for money, and quality assurance. Most of them are strongly attracted by practical attributes and somewhat less so by its experiential attributes [28]. P2P accommodation has unique motivators that are linked to the characteristics of human elements: environmental responsibility, community, and economic benefits [4]. Financial benefits are an aspect as some people look at the sharing economy as a cheaper alternative to traditional accommodation options. This perspective has been countered by [4], who identified that motivation for P2P accommodation also comes from reasons beyond monetary factors, such as community. Community is a value that leans towards the idea of social relationships and the practice of sharing, openness, and collaboration. It reflects guests’ desire for social interactions and reflects how guests interact with locals, experience local cultures, and indulge in local culinary. The community's value can also evoke the feeling of homeliness and create a home-like atmosphere [4]. Sustainability is a factor of sharing economy where it is believed that reductions of environmental harm can be achieved through the use of underutilized assets. By using P2P accommodation, we are not spending more resources but using assets that already exist [4].
Research about the Topics in P2P accommodation identified four critical topics; they are location, amenities, host, and recommendation [5]. The location's theme covers concepts such as geographical location to the point of interest, distance to nearby landmarks, and easiness of access to the accommodation. The location's convenience is essential, which describes the reach and ease of access to major tourist attractions, transportation hubs, and points of interest from the accommodation. The theme of amenity is a broad theme that also discusses the theme of facility and room. Amenity describes the availability of basic facilities such as towels, soap, and breakfast, which guests desire but may or may not be essential to the accommodation. Facilities deal with a broader accommodation category, such as the availability of a garden, pool, or balcony at the accommodation.
Meanwhile, the room's theme describes the environment inside the room, such as space, bed, room design, cleanliness, and other decoration. An essential attribute for a room is privacy and quality of sleep. The host's theme encompasses concepts that describe host's role in facilitating an Airbnb experience to guests [5]. The host is an important theme as the host has a central role in setting the guests’ experience upon their visit. The last strong theme that emerged within reviews that guests made is a recommendation. While the recommendation itself is not an attribute that directly describes P2P accommodation, it is an outcome discussed by guests of P2P accommodation as a result of the other identified themes [5].
Security issues in accommodation, according to [3] refer to guests’ safety during their stay. They defined two sides of security; the first is the guests’ active contribution in creating a safe environment, concerning issues such as illegal drug use, identity theft, and other unlawful activities that guests may do during their stay. Second is the hosts’ ability to create a safe environment at the accommodation, which includes maintaining the accommodation well, preparing safety equipment, and having safety precautions [3].

Positive and negative customer reviews

Guests often seek advice or review from other people to justify their purchase decision, where the review score and negative sentiment are tested significant [13]. As such, positive and negative word of mouth is proven to have a strong influence on consumer purchase decisions [29]. However, negative reviews are more authentic and credible than positive reviews on Airbnb. Social words' occurrence is positively related to positive emotion in reviews but negatively related to negative emotion in reviews [30].
P2P platforms such as Airbnb adopted customer reviews as an official feature that facilitates word of mouth within the platform. Since guests who have prior experience are encouraged to share their opinions, customer reviews also become a way for guests to express their satisfaction and dissatisfaction towards the accommodation they chose. These expressions are written in words but also quantified through the usage of the rating system. Hence, ratings and reviews in P2P accommodation also act as a proxy behind guests’ satisfaction and dissatisfaction [29].
The reasoning behind how customers rate in online platforms can be explained by the research of [31]. They made an observation using the J-shaped distribution in ratings. They found that the majority of consumers who write customer reviews tend to write positive reviews to express their satisfaction in the form of a five or 4-star rating on a 5 point rating scale. Meanwhile, a noticeably smaller number of negative reviews express dissatisfaction in the form of a two or one-star rating on a 5 point rating scale. The reason behind this is because people with moderate and undesirable views are less passionate to exert the time and effort to report their ratings in comparison to people who have desirable and positive aspects on their experience. This phenomenon is not unique to Airbnb as the same pattern was found on a similar study conducted on customer reviews found on Amazon, Yelp, and TripAdvisor, where customer reviews are highly skewed towards the positive sides.
Prior research using customer reviews in the accommodation industry to draw meaningful insights on P2P accommodation are definite. The study found that the overall review star rating correlates pretty well with the sentiment scores for both the title and the full content of the online customer review [32]. [33] tried to present a case of text mining on Airbnb user reviews to analyze and understand various aspects that drive customer satisfaction. In the different industries, such as airlines, using a text mining approach on the Online Customer Reviews (OCRs) can predict airline recommendations by customers, resulting in an accuracy of 79.95% [34].
Several studies of online reviews have seen a consistent positivity bias in the writing of reviews [6]. They looked into factors that contribute to the positivity bias behind customer reviews. The first reason is guests’ expectations being lower for individuals' accommodations in comparison to accommodations provided by hotels. Since Airbnb properties are provided by individuals who act as hosts, in addition to the lack of standards that Airbnb properties have, guests tend to be more realistic in their expectations over what they will receive from their Airbnb stays [35]. Second, there also tends to be a more personal and personalized interaction between the host and the guest. Often, guests will be communicating with the person who owns the property directly instead of talking to customer service staff as they do with hotels [36]. Furthermore, reviews in Airbnb are not anonymous, and each review is linked to the reviewers’ profile. This personal experience and lack of anonymity lead to the behavior where posting negative feedback may be difficult and awkward for guests and may lead to guests not writing negative reviews when possible [35].
Lastly, a bias towards positive reviews can be driven by Airbnb’s review guidelines. Although Airbnb doesn’t directly edit and censor reviews, Airbnb reserves the right to remove personal insults, contain profanity, discrimination, and generally inappropriate and against their review guidelines. Airbnb review guidelines also encourage a typically positive and constructive review, which possibly becomes a community-developed norm that Airbnb users abide and follow [35].
There are three main findings that the study by [6] discovered regarding Airbnb customer reviews. Firstly, customer reviews written are highly positive and frequently comment on the ease of communication and the accommodation's cleanliness. Second, a negative review is rare, and when it is found, it is written in a manner that is suppressed, and complaints are sandwiched in between positive comments. Finally, when guests do not feel like writing a positive review but avoid writing negative reviews, they chose to write lukewarm reviews where the content is positive but lacks the enthusiasm that usually comes with a genuine positive review.

Method

Data collection

Data for this research consists of guest reviews of Airbnb listings from the top 10 cities in Indonesia based on cities with the highest foreign arrivals according to statistical data issued by the Indonesian Central Agency of Statistics [37]. This study focuses on the top 10 cities as a proxy that mirrors Indonesia's popular destinations to foreigners. That also reflects the dominant amount of English reviews found in the dataset. The Foreign arrival and English use for the review reflect the geographical diversity of the data drawn. The research applied a web scraping method using direct HTTP request with Javascript to get user review data from Airbnb’s website. We drawn a total of 66,630 reviews from 7356 properties listed on the Airbnb website from the ten cities. 55,377 out of the 66,630 reviews are written in English (83%) and have an average length of 42 words. In general, the steps of our study mentioned earlier and will be explained subsequently after this section can be visualized in the form of a flowchart as shown in Fig. 1.

Data analysis

A very limited previous research can be found in prediction rating using customer reviews. [38] used sentiment analysis from customer reviews to predict hotel ratings where they discovered that classified reviews as positive or negative are correlated positively with numerical ratings. Some other studies used customer reviews to predict the beaches' rating [39] and [40] urged that neuro-fuzzy can be utilized for sentiment analysis and review rating prediction tasks.
Another recent study in prediction related to peer to peer accommodation was done by [41], where they found that house popularity can be predicted more effectively using a Dual-Gated Recurrent Unit (DGRU). The predictive model will attempt to classify reviews as high rated or low rated based on its associated P2P accommodation attributes as the independent variable. In creating this model, several steps are taken. The first step is to classify the data as high rated or low rated. In accordance with our positive and negative review literature, we will classify reviews into two categories; high rating and low rating. High rating reviews are reviews that have four or 5-star ratings, and low rating reviews are reviews that have one or 2-star ratings [31]. In this model, reviews with a star rating 3 will be excluded. A new column called ‘highrating’ is created and given the value of 1 if the review is categorized as a high rating and the value of 0 if the review is categorized as a low rating. This prediction aims to be able to classify reviews as either a high rating or low rating based on the binary value of 1 or 0 as registered in the binary column. Another pre-processing data judgment is to limit reviews to those written before the year 2020 and reviews with at least 5 characters or more. This step provides us with 544 negative reviews and 48,435 positive reviews to analyze.
The following pseudocode initiates the scripting environment, cleans the reviews dataset by removing rows with a rating of 0, rating of 3, the year 2020, and comments with length less or equal to 5, see Table 1.
Table 1
Pseudocode to initiates the scripting environment, cleans the reviews dataset
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab1_HTML.png
Table 2 shows a pseudocode to creates a binary classification stored in high rating column. If row has rating of 5 or rating of 4, high rating is classified as 0. If row has rating of 2 or rating of 1, high rating is classified as 1.
Table 2
Pseudocode to creates a binary classification
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab2_HTML.png
To find the attributes, text-mining techniques are utilized to tokenize reviews and isolate relevant and impactful terms using pseudocode in Table 3 below.
Table 3
Pseudocode to tokenized and pre-process tokens from reviews dataset
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab3_HTML.png
Further processing is also conducted to prepare the tokenized datasets with attributes to match the required structure to perform predictive analysis. That process is executed using pseudocode available in Table 4.
Table 4
Pseudocode to create Document Frequency Matrix (DFM) and data frame from the tokens
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab4_HTML.png
Due to the overwhelming amount of positive reviews in comparison to negative reviews, using the current dataset will inevitably lead to a biased prediction. This is a common problem in datasets known as imbalances in the dataset [42]. The method used to balance the data in this analysis is the undersampling method. In the undersampling method, members of the majority dataset will be eliminated until the data set gets balanced based on a pre-specified selection criterion, see Table 5.
Table 5
Pseudocode to balance the dataset between majority binary class and minority binary class using the undersampling method
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab5_HTML.png
The next step, we employed (CART Model), Random Forest Model, (LASSO), and Logistic regression to predict the rating classification based on the identified attributes using pseudocode in Tables 6, 7, and 8 as well as in Table 9 below accordingly.
Table 6
Pseudocode to execute the CART Model and plot decision tree
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab6_HTML.png
Table 7
Pseudocode to execute the Random Forest Model and plot essential variables based on Random Forest algorithm
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab7_HTML.png
Table 8
Pseudocode to execute LASSO Regression to find Minimum Lambda to be used in Logistic Regression
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab8_HTML.png
Table 9
Pseudocode to execute Logistic Regression to find Odds Ratio and Logistic Regression Coefficient for each variable
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab9_HTML.png
To test the predictive model, see Table 10, the study creates training model with random forest algorithm to perform prediction on the prepared testing dataset.
Table 10
Pseudocode to train, test and execute prediction based on model trained
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab10_HTML.png
Finally, for comparison, we will also do another prediction using Artificial Neural Network (ANN) since it can produce a better result in prediction purposes with big data as suggested by [43] via the RWeka package, see Table 11.
Table 11
Pseudocode to create training and testing dataset using J48 Classifier and MLP Classifier
https://static-content.springer.com/image/art%3A10.1186%2Fs40537-020-00395-6/MediaObjects/40537_2020_395_Tab11_HTML.png

Results

Using attributes to predict rating classification in customer review

This study wants to see what customer behavior can be predicted with the identified topics and attributes from Airbnb customer reviews. As we found in the analysis of positive and negative reviews, customer ratings act as a proxy that reflects customers’ satisfaction with the service (Bridges & Vasquez, 2018). Attempting to predict customer ratings may provide a glimpse into predicting customer satisfaction. Hence, we will look into predicting guests’ behavior in the rating classification of reviews. A binomial classification predictive model is created to see how the existence of certain attributes or topics can increase the odds of a review in Airbnb to be categorized as a high rating or low rating. We will try to predict whether or not an Airbnb user will give a high or low rating in their review. The methods used are the classification and regression tree (CART), random forest, and least absolute shrinkage and selection operator (LASSO) logistic regression based on the bag of words text-mining approach [44].
The first analysis is using the CART algorithm to create a classification. In this analysis, a complete decision tree is built, and the optimum complexity parameter (CP) minimum error is identified [44]. Each CP relative to the size of the tree and its relative error are plotted (see Fig. 1). In creating this tree, the column ‘highrating’, which has the classification of the high and low rating of a review, will be the dependent variable. Meanwhile, the remaining attributes will become the independent variable. Note that in this model, ‘highrating’ is binary, while the independent variable is continuous and takes the frequency of the attribute as its value.
We can visualize the decision tree, which is pruned based on the identified CP value. From Fig. 2 above, we obtained 0.00096 as the most optimum CP, and using this CP value; we will be able to identify at most a decision tree with the size of 12 branches. The result of the decision tree can be seen in Fig. 3.
Another classification that we will use to extend the analysis is by using the random forest algorithm. By inputting the dataset into the randomForest package on R, we are able to obtain the plotted Random Forest Model (see Fig. 4).
To complete our prediction on attributes, the LASSO logistic regression algorithm for final classification using the glmnet package. From the LASSO logistic regression, we obtained the odds ratio of the logistic regression model for each attribute that we use as an independent variable [44]. In doing this, the first step is to find the optimal value of lambda, plotted as below (see Fig. 5).
We first conduct a LASSO regression analysis, where we obtained two values from this plot, which is the optimal value of lambda that we will use for the logistic regression. The output is two distinct datasets that give us further insights into this classification. First is obtaining an odds ratio for each variable, which indicates how the existence of a variable can increase the odds of review to be classified as a high rating. The other output is the logreg coefficient, which provides a negative coefficient and will indicate if the presence of the term can lead to the probability of a review to be classified as high rated to become low [44]. The result of this prediction is as shown in Table 12.
Table 12
Odds ratio and logreg coefficient for attributes prediction
Odds ratio
Logreg coefficient
Variable
Odds ratio
Variable
Coef
Exactly
6.64
Dirty
− 2.38
Comfy
5.08
Broken
− 1.82
Amazing
4.95
Left
− 1.78
Quick
4.42
Never
− 1.76
Definitely
4.18
Bad
− 1.75
Love
3.66
Smell
− 1.72
Friendly
3.61
Owner
− 1.68
Perfect
3.56
Book
− 1.61
Hospitality
3.53
Ask
− 1.61
Space
3.51
Disappointed
− 1.59
Using RWeka package and performing ANN techniques, we can also use the identified attributes to predict whether reviews will be classified as low ratings or high ratings. First, using the same dataset, we partition the data into the training dataset and testing dataset in an 80% to 20% ratio using the createDataPartition function in R for fairness. We load the J48 Classifier from RWeka and create a prediction model using the Classifier and our training dataset. After we obtain the prediction model, we use it to predict against our training dataset. The result is as follows (Fig. 6).
Next, maintaining the same method, we made another prediction, but this time using the Multilayer Perceptron model or MLP for short. We use the same training and testing dataset for fairness in comparison. The result is as follows (Fig. 7).
As seen in the results above, the J48 Classifier prediction has 84.79% accuracy, while the MLP prediction has 72.35% accuracy. The results can be summarized in Table 13.
Table 13
Prediction model summary for attributes prediction
Prediction model
Accuracy (%)
J48
84.79
MLP
72.35
Both predictions boast a high and satisfactory accuracy level, which validates the idea that attributes can be used to predict customer behavior and satisfaction as expressed through their intention in classifying ratings. This encourages the notion of investigating attributes further as a means to understand the behavior and satisfaction of consumers in P2P accommodation.

Using topics to predict rating classification in customer review

Another analysis that we will conduct is to make the same rating classifications but with topics as the variable. This analysis used the same dataset as before, but with an extra step in the pre-processing data stage. The goal is to combine related features from the document features matrix and group its frequency based on the topic that the feature is associated with, and the result can be seen in Table 14. The list of topics and attributes associated with each topic is based on research done by (3–5).
Table 14
Topic distribution and attributes example
Topic
Attributes
Topic
Attributes
Topic
Attributes
Location
Location
Facility
Villa
Price
Price
 
Walk
 
Room
 
Money
 
Amaze
 
Apartment
 
Free
 
Close
 
House
 
Worth
 
Night
 
Pool
 
Spend
Amenity
Soap
Room
Clean
Recommendation
Recommend
 
Snack
 
Comfortable
 
Perfect
 
Utensil
 
Bed
 
Highly
 
Pancake
 
Big
 
Lot
 
Juice
 
Spacious
 
Wonderful
Host
Host
Security
Safe
Community
Love
 
Time
 
Security
 
Family
 
Helpful
 
Privacy
 
Lovely
 
Staff
 
Secure
 
Enjoy
 
Friendly
 
Guard
 
Feel
Based on the topic distribution list, iteration can be done through the document term features matrix (DTM) for the dataset and used to find the cumulative frequency for each topic based on its associated attributes. The result is an aggregated document features matrix, which can be seen in Fig. 8.
Provided with that document features matrix (see Fig. 8), we apply the same steps and algorithm from the classification of high or low rating using the CART, Random Forest Model, and LASSO Logistic Regression. Similarly, we first built a complete decision tree and calculated the optimal CP value relative to the size of the tree and its relative error, see Fig. 9.
Based on the CP value, we visualize the decision tree for our topics, as can be seen in Fig. 10. The visualization of the decision tree shows importance being placed on the topic of the facility, room, location, and price in deciding whether a review can be classified as a high or low rating.
After the CART Model analysis, we conduct the Random Forest Model analysis as well. The output of the Random Forest analysis is as can be seen in Fig. 11.
Finally, to create our prediction, we conduct the LASSO logistic regression algorithm. Similarly, we plot our MSE values to find the optimal lambda_min that we need for our logistic regression [44], see Fig. 12.
The output of our logistic regression provides us with two data outputs, as can be seen in Table 15.
Table 15
Odds ratio and logreg coefficient for topics prediction
Odds ratio
Logreg coefficient
Variable
Odds ratio
Variable
Coef
Location
1.20
Amenity
− 0.82
Community
1.04
Price
− 0.53
Host
1.00
Security
− 0.26
Recommendation
0.91
Facility
− 0.25
Room
0.89
Room
− 0.11
Facility
0.78
Recommendation
− 0.10
Security
0.77
Host
0.00
Price
0.59
Community
0.04
Amenity
0.44
Location
0.18
Finally, to confirm our prediction, a training model is created with the caret package. Using our aggregated topic document features matrix, we create a training model using the random forest as its method [45, 46]. Here we have the ‘highrating’ category as its dependent variable, which has a binary value, and the topic of location, room, amenity, host, recommendation, facility, price, security, and community as the independent variable, which has a frequency as its value. We set aside 80% of our dataset as a training set and 20% of our dataset as a testing set. This results in 870 training data and 218 test data. The result of the training model and its prediction is in Table 16.
Table 16
Topics testing set prediction result
Dataset
1088
Training set
870 (80%)
Testing set
218 (20%)
Correct prediction
131
Prediction accuracy
60.09%
From our testing data set, we are able to correctly predict 131 datasets from 218 data, which results in 60.09% prediction accuracy. Several examples of the prediction results are shown in Table 17.
Table 17
Testing set prediction document example
Document
Original
Prediction
Result
Text1
0
0
Correct
Text2
1
0
Incorrect
Text3
1
0
Incorrect
Text4
0
0
Correct
Text5
0
1
Incorrect
For comparison, we also conduct prediction with the same dataset on two other prediction models: J48 Classifier and MLP, which are artificial neural network (ANN) prediction techniques available through the RWeka package. From the J48 Classifier technique, we obtain the following result, see Fig. 13.
The J48 Classifier has 58.33% accuracy in its prediction. Meanwhile, for the MLP prediction, we obtain the following result, see Fig. 14.
The MLP prediction model has 58.8% accuracy from its prediction. The results from the three prediction methods can be summarized in the following Table 18.
Table 18
Prediction model summary for topics prediction
Prediction model
Accuracy (%)
RandomForest
60.09
J48
58.33
MLP
58.8
As summarized, the results from the three-prediction model hover around the same range of accuracy. While the prediction result is satisfactory, the prediction result is relatively low, which indicates that the training model can be improved by including more data. The immediate area of improvement is to explore a more representative balancing method other than the undersampling method used in this prediction model. Several methods that can be considered include the oversampling method, SMOTE method, and CSL method [42]. Another area of improvement that is more challenging but will significantly enrich the dataset is to obtain more negative reviews from Airbnb, which will give a better positive to negative review ratio and allow analysis with a more significant scope of data.
One interesting comparison to make is comparing the accuracy results between using topics as the predictor variable and attributes as the other predictor variable. The comparison is shown in the following Table 19.
Table 19
Prediction model summary for topics and attributes prediction
Predictor
Prediction model
Accuracy (%)
Topics
RandomForest
60.09
Topics
J48
58.33
Topics
MLP
58.8
Attributes
J48
84.79
Attributes
MLP
72.35
As clearly shown above, the accuracy of prediction while using attributes is significantly higher. This can be due to using attributes as the predictors to provide the prediction model with more information than using topics. This could be the case as topic information is obtained from aggregating attributes, and in retrospect, this may dilute through the process. Meanwhile, attributes information is kept at its raw form and directly used to train the prediction model. That gives us a hint towards attributes being a more substantial data point in understanding customer behavior in P2P accommodation.

Discussion

This study has used a series of methods for predicting and understanding consumers’ behavior in rating reviews based on P2P accommodation attributes and topics. The CART model for attributes in customer reviews shows words such as ‘dirty,’ ‘bad,’ ‘toilet,’ ‘never’ are plotted, which are used by unhappy customers, and those who would give a low rating for their review; see Fig. 3. Based on our understanding of these attributes from previous analysis, we can imply that these words most likely point to customers’ complaints on cleanliness, especially in the bathroom and toilet area. Furthermore, these selections of words also imply that customers may not want to revisit the accommodation, implied from the word ‘never’.
We also find that the classification resulted from the Random Forest Model (can be seen in Fig. 4) is inline with the CART model and also identified ‘dirty,’ ‘bad,’ ‘toilet,’ and ‘never’ as important variables. The Random forest model also identified several other words related to negative customer perception, such as ‘refund’. On the other hand, the majority of the variables identified by the Random forest model lean towards a positive description of the accommodation, such as from the word ‘stay,’ ‘amazing,’ and ‘helpful.’
Finally, the result of the logistic regression for attributes (see Table 12) can be interpreted as follow. Looking at the odds ratio output, we see that when the word ‘exactly’ is present in a review, there are 6.64 times more odds that the review will have a high rating. The same interpretation can be applied for the variable ‘comfy,’ ‘amazing,’ ‘quick,’ and so on where the presence of each variable can provide a review with 5.08, 4.95, and 4.42 odds, respectively, for the review to be rated high.
Meanwhile, looking at the logreg coefficient table (see Table 12), we can see which variable may reduce the probability of a customer review to have a high rating. The variable with the greatest impact for a review to be rated low is ‘dirty,’ and this conforms with classification from the CART and Random Forest Model. Other variables identified include ‘broken,’ ‘left,’ ‘never,’ ‘bad,’ ‘smell,’ ‘owner,’ ‘book,’ ‘ask,’ and ‘disappointed’ which are all words that we have identified being used in negative reviews as described on our previous analysis.
When looking at topics, we see a similar pattern between the CART model (Fig. 10) and the Random Forest Model (Fig. 11), where we identified facility, room, and location as an important variable. There is one difference as the random forest model didn’t emphasize ‘Price’ as a variable. The Random Forest Model output, however, greatly validates and confirms the TF-IDF ranks for each topic that we obtain from our topic distribution analysis in Table 14. Similar to the topic distribution analysis, the topic of the facility, room, host, location, and recommendation are greatly more dominant compared to the topic of community, price, security, and amenity, which implies greater attention required to be placed on those topics.
The result of the LASSO logistic regression for topics gives us exciting results, see Table 15. First, we look into the odds ratio output for each topic. The inclusion of the topic of location in a review can increase the odds of the review to be highly rated by 1.20 times. That matches our previous topic distribution analysis, where the topic of the location has the highest TF-IDF value. Surprisingly, the topic of community also has the chance to increase the odds of a review to be rated highly by 1.04 times. This contrasts with our previous analysis, where the usage of attributes related to the community is limited and not as widely discussed among reviews.
As we look at the logreg coefficient (see Table 15), we can see the topic where most customer complaints lay. The topic of amenity has the highest coefficient and shows that complaints regarding amenity are the greatest factor that can lead to dissatisfied customers and hence, low rating review. This confirms the understanding of negative reviews for an amenity that shows the importance customers placed in having a clean and well-maintained supply of amenity. This also conforms with the previous attributes prediction where the variable ‘dirty’ is the most impactful variable in classifying a review as low rated.
The prediction also shows that attributes contain richer information in creating prediction in comparison to topics. Prediction summary results (Table 19) indicated that attributes have an accuracy of 72–85% while prediction results with topics have accuracy at the range of 60%. This posed the argument of P2P accommodation attributes as an excellent avenue in studying consumer behavior and satisfaction in P2P accommodation.
This prediction gives us more understanding of how each attribute influences users’ intention to give their reviews a particular rating. As mentioned before, ratings can act as a proxy that reflects customers’ satisfaction and dissatisfaction [6]. From this prediction study, we can look into which attributes and topics can increase the odds of high rating reviews, which implies increases in customer satisfaction.

Conclusion and implication for further research

In this research, we have created and attempted to make a prediction using our dataset, thus acknowledged the potential and opportunity for a more extensive prediction model with the dataset available and data points identified from the analysis of topics and attributes in this research. This research will propose several predictive model areas that can be pursued in future research.
Firstly, the prediction model that will be of great interest for future research, is in accordance with behavioral intention. In the topics and attributes analysis, this research identified common occurrences where users show behavior such as repurchase intention from their statement to revisit the same accommodation, and word of mouth from recommendation to potential guests. The opposite behavior is also shown when customers write warnings and discouragement future guests to choose a particular accommodation. Future studies can quantify these behaviors and use them as Independent Variables to predict Airbnb's customer behavior in accordance with the behavioral intention theory.
Secondly, the prediction model is to create predictions based on relationships between guests and hosts, creating bias in review reporting [47]. From analyzing the available data in the dataset, we notice that relationships between hosts and guests can be mapped since each review consists of data on who the reviewer is, who the reviewee is, and on which accommodation the review is given. Equipped with knowledge and understanding of topics and attributes of P2P accommodation from this research, the relationship between hosts and guests can be mapped, and their behavior and perception towards certain topics or attributes can be predicted. For example, a relationship can be mapped to see the number of times guests choose accommodation for a specific set of features such as the distance and proximity towards a point of interest or the completeness of amenities. Based on this relationship, a prediction model can be created to predict which attributes will encourage guests to choose accommodation.
Thirdly, the prediction model is to create a training set that can predict ratings of accommodation. Using topics and attributes identified in this research, along with other data available from the dataset, it is possible to construct a predictive model to predict ratings precisely.
Other than the above proposal for the prediction model, there are several areas of improvement for the predictive analysis's technical conduct that can be adopted for future research. The first area of improvement is the issue of an imbalanced dataset and the approach to balancing the data. The phenomenon of a positivity bias in customer review is well known, and imbalanced data is an inevitable characteristic that datasets such as Airbnb’s will have. The solution to this issue is to balance the dataset through sampling methods. There are several popular methods of sampling to balance datasets such as undersampling, oversampling, synthetic minority oversampling technique (SMOTE), and cost-sensitive learning (CSL) [42]. This research currently uses the undersampling method; however, it is recommended for a better representation of the data to consider both undersampling and oversampling methods since each has pros and cons. Furthermore, SMOTE and CSL can be an advanced sampling method that can represent the dataset better.
The second area of improvement is exploring and using other predictive models for analysis other than CART, random forest, and LASSO logistic regression method. The three methods are chosen for the current research due to the independent variable being binary and the prediction to be a form of classification. However, to conduct predictive models for scenarios such as predicting rating, other methods will be required. Other methods to consider are Multinomial Logistic Regression, Ordinal Logistic Regression, and Multinomial Naïve Bayes as potential prediction methods.
The third area of improvement is to use the semantic parsing approach. The current prediction analysis in this research uses the bag of words approach where all words are analyzed as a single token, and the order of the token does not matter. A more extensive study can utilize semantic parsing where the model will also consider word sequence and word usages such as nouns, verbs, and hierarchical word structure.
Regardless of future research possibilities, this research has proved that P2P accommodation attributes can be used to predict customer behavior in classifying ratings for their review. This act of classification serves as a proxy in predicting customer satisfaction based on how they describe their stay experience. Furthermore, this research also identifies which set of attributes and topics leads to increased high rated reviews (satisfaction). Conversely, another set of attributes to avoid can lead to an increase in low rated reviews (dissatisfaction). These insights contribute to the industry of P2P accommodation as a model to understand which attributes of P2P accommodation must be optimized to drive higher satisfaction from customers. Nevertheless, P2P accommodation attributes and prediction models are an extensive and in-depth research area where possibilities of approaches are limitless.

Acknowledgements

Not aplicapble

Competing interests

The authors declare that they have no competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Tussyadiah IP, Zach F. Identifying salient attributes of peer-to-peer accommodation experience. J Travel Tour Mark. 2017;34(5):636–52.CrossRef Tussyadiah IP, Zach F. Identifying salient attributes of peer-to-peer accommodation experience. J Travel Tour Mark. 2017;34(5):636–52.CrossRef
2.
go back to reference Lee CKH, Tse YK, Zhang M, Ma J. Analysing online reviews to investigate customer behaviour in the sharing economy: the case of Airbnb. Inf Technol People. 2019;33(3):945–61.CrossRef Lee CKH, Tse YK, Zhang M, Ma J. Analysing online reviews to investigate customer behaviour in the sharing economy: the case of Airbnb. Inf Technol People. 2019;33(3):945–61.CrossRef
3.
go back to reference Belarmino A, Koh Y. A critical review of research regarding peer-to-peer accommodations. Int J Hosp Manag. 2019;2020(84):102315. Belarmino A, Koh Y. A critical review of research regarding peer-to-peer accommodations. Int J Hosp Manag. 2019;2020(84):102315.
4.
go back to reference Tussyadiah IP, Zach FJ. Hotels vs. peer-to-peer accommodation rentals: text analytics of consumer reviews in Portland, Oregon. SSRN Electron J. 2015; Tussyadiah IP, Zach FJ. Hotels vs. peer-to-peer accommodation rentals: text analytics of consumer reviews in Portland, Oregon. SSRN Electron J. 2015;
5.
go back to reference Cheng M, Jin X. What do Airbnb users care about? An analysis of online review comments. Int J Hosp Manag. 2018;2019(76):58–70. Cheng M, Jin X. What do Airbnb users care about? An analysis of online review comments. Int J Hosp Manag. 2018;2019(76):58–70.
6.
go back to reference Bridges J, Vásquez C. If nearly all Airbnb reviews are positive, does that make them meaningless? Curr Issues Tour. 2018;21(18):2065–83.CrossRef Bridges J, Vásquez C. If nearly all Airbnb reviews are positive, does that make them meaningless? Curr Issues Tour. 2018;21(18):2065–83.CrossRef
7.
go back to reference Prayag G, Ozanne LK. A systematic review of peer-to-peer (P2P) accommodation sharing research from 2010 to 2016: progress and prospects from the multi-level perspective. J Hosp Mark Manag. 2018;2:12. Prayag G, Ozanne LK. A systematic review of peer-to-peer (P2P) accommodation sharing research from 2010 to 2016: progress and prospects from the multi-level perspective. J Hosp Mark Manag. 2018;2:12.
8.
go back to reference Dolnicar S. A review of research into paid online peer-to-peer accommodation: Launching the Annals of Tourism Research curated collection on peer-to-peer accommodation. Ann Tour Res. 2019;75:248.CrossRef Dolnicar S. A review of research into paid online peer-to-peer accommodation: Launching the Annals of Tourism Research curated collection on peer-to-peer accommodation. Ann Tour Res. 2019;75:248.CrossRef
9.
go back to reference Sainaghi R. The current state of academic research into peer-to-peer accommodation platforms. Int J Hosp Manag. 2020;89:102555.CrossRef Sainaghi R. The current state of academic research into peer-to-peer accommodation platforms. Int J Hosp Manag. 2020;89:102555.CrossRef
10.
go back to reference Oskam J, Boswijk A. Airbnb: the future of networked hospitality businesses. J Tour Futur. 2016;2:22.CrossRef Oskam J, Boswijk A. Airbnb: the future of networked hospitality businesses. J Tour Futur. 2016;2:22.CrossRef
11.
go back to reference Guttentag D. Progress on Airbnb: a literature review. J Hosp Tour Technol. 2019;10:1. Guttentag D. Progress on Airbnb: a literature review. J Hosp Tour Technol. 2019;10:1.
13.
go back to reference Biswas B, Sengupta P, Chatterjee D. Examining the determinants of the count of customer reviews in peer-to-peer home-sharing platforms using clustering and count regression techniques. Decis Support Syst. 2020;135:113324.CrossRef Biswas B, Sengupta P, Chatterjee D. Examining the determinants of the count of customer reviews in peer-to-peer home-sharing platforms using clustering and count regression techniques. Decis Support Syst. 2020;135:113324.CrossRef
14.
go back to reference Wachsmuth D, Weisler A. Airbnb and the rent gap: Gentrification through the sharing economy. Environ Plan A. 2018;3:33. Wachsmuth D, Weisler A. Airbnb and the rent gap: Gentrification through the sharing economy. Environ Plan A. 2018;3:33.
15.
go back to reference Celata F, Hendrickson CY, Sanna VS. The sharing economy as community marketplace? Trust, reciprocity and belonging in peer-to-peer accommodation platforms. Cambridge J Reg Econ Soc. 2017;10:349.CrossRef Celata F, Hendrickson CY, Sanna VS. The sharing economy as community marketplace? Trust, reciprocity and belonging in peer-to-peer accommodation platforms. Cambridge J Reg Econ Soc. 2017;10:349.CrossRef
16.
go back to reference Lutz C, Newlands G. Consumer segmentation within the sharing economy: The case of Airbnb. J Bus Res. 2018;88:187.CrossRef Lutz C, Newlands G. Consumer segmentation within the sharing economy: The case of Airbnb. J Bus Res. 2018;88:187.CrossRef
17.
go back to reference Geron T. Airbnb and the unstoppable rise of the share economy. Forbescom. 2013;22:9991. Geron T. Airbnb and the unstoppable rise of the share economy. Forbescom. 2013;22:9991.
18.
go back to reference Frenken K, Schor J. Putting the sharing economy into perspective. Environ Innov Soc Transitions. 2017;23:3–10.CrossRef Frenken K, Schor J. Putting the sharing economy into perspective. Environ Innov Soc Transitions. 2017;23:3–10.CrossRef
19.
go back to reference Varma A, Jukic N, Pestek A, Shultz CJ, Nestorov S. Airbnb: Exciting innovation or passing fad? Tour Manag Perspect. 2016;20:228–37.CrossRef Varma A, Jukic N, Pestek A, Shultz CJ, Nestorov S. Airbnb: Exciting innovation or passing fad? Tour Manag Perspect. 2016;20:228–37.CrossRef
20.
go back to reference Phua VC. Perceiving Airbnb as sharing economy: the issue of trust in using Airbnb. Curr Issues Tourism. 2019;9:877. Phua VC. Perceiving Airbnb as sharing economy: the issue of trust in using Airbnb. Curr Issues Tourism. 2019;9:877.
21.
go back to reference Guttentag DA, Smith SLJ. Assessing Airbnb as a disruptive innovation relative to hotelsSubstitution and comparative performance expectations. Int J Hosp Manag. 2017;64:1–10.CrossRef Guttentag DA, Smith SLJ. Assessing Airbnb as a disruptive innovation relative to hotelsSubstitution and comparative performance expectations. Int J Hosp Manag. 2017;64:1–10.CrossRef
22.
go back to reference Sainaghi R, Baggio R. Substitution threat between Airbnb and hotels: Myth or reality? Ann Tour Res. 2020;83:102959.CrossRef Sainaghi R, Baggio R. Substitution threat between Airbnb and hotels: Myth or reality? Ann Tour Res. 2020;83:102959.CrossRef
23.
go back to reference Mody MA, Suess C, Lehto X. The accommodation experiencescape: a comparative assessment of hotels and Airbnb. Int J Contemp Hosp Manag. 2017;29:2377.CrossRef Mody MA, Suess C, Lehto X. The accommodation experiencescape: a comparative assessment of hotels and Airbnb. Int J Contemp Hosp Manag. 2017;29:2377.CrossRef
24.
go back to reference Guttentag D. Airbnb: disruptive innovation and the rise of an informal tourism accommodation sector. Curr Issues Tour. 2015;18:1–26.CrossRef Guttentag D. Airbnb: disruptive innovation and the rise of an informal tourism accommodation sector. Curr Issues Tour. 2015;18:1–26.CrossRef
25.
go back to reference Zhang T, Bufquin D, Lu C. A qualitative investigation of microentrepreneurship in the sharing economy. Int J Hosp Manag. 2019;79:148.CrossRef Zhang T, Bufquin D, Lu C. A qualitative investigation of microentrepreneurship in the sharing economy. Int J Hosp Manag. 2019;79:148.CrossRef
26.
go back to reference Ju Y, Back KJ, Choi Y, Lee JS. Exploring Airbnb service quality attributes and their asymmetric effects on customer satisfaction. Int J Hosp Manag. 2019;21:892. Ju Y, Back KJ, Choi Y, Lee JS. Exploring Airbnb service quality attributes and their asymmetric effects on customer satisfaction. Int J Hosp Manag. 2019;21:892.
27.
go back to reference Zhang G, Cui R, Cheng M, Zhang Q, Li Z. A comparison of key attributes between peer-to-peer accommodations and hotels using online reviews. Current Issues in Tourism. 2020. Zhang G, Cui R, Cheng M, Zhang Q, Li Z. A comparison of key attributes between peer-to-peer accommodations and hotels using online reviews. Current Issues in Tourism. 2020.
28.
go back to reference Guttentag D, Smith S, Potwarka L, Havitz M. Why Tourists Choose Airbnb: A Motivation-Based Segmentation Study. J Travel Res. 2018;2:90. Guttentag D, Smith S, Potwarka L, Havitz M. Why Tourists Choose Airbnb: A Motivation-Based Segmentation Study. J Travel Res. 2018;2:90.
29.
go back to reference Sparks BA, Browning V. The impact of online reviews on hotel booking intentions and perception of trust. Tour Manag. 2011;32(6):1310–23.CrossRef Sparks BA, Browning V. The impact of online reviews on hotel booking intentions and perception of trust. Tour Manag. 2011;32(6):1310–23.CrossRef
30.
go back to reference Zhang J. What’s yours is mine: exploring customer voice on Airbnb using text-mining approaches. J Consum Mark. 2019;1:90. Zhang J. What’s yours is mine: exploring customer voice on Airbnb using text-mining approaches. J Consum Mark. 2019;1:90.
31.
go back to reference Hu N, Zhang J, Pavlou PA. Overcoming the J-shaped distribution of product reviews. Communications of the ACM. 2009. Hu N, Zhang J, Pavlou PA. Overcoming the J-shaped distribution of product reviews. Communications of the ACM. 2009.
32.
go back to reference He W, Tian X, Tao R, Zhang W, Yan G, Akula V. Application of social media analytics: A case of analyzing online hotel reviews. Online Inf Rev. 2017. He W, Tian X, Tao R, Zhang W, Yan G, Akula V. Application of social media analytics: A case of analyzing online hotel reviews. Online Inf Rev. 2017.
33.
go back to reference Joseph G, Varghese V. Analyzing Airbnb customer experience feedback using text mining. In: Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications. 2019. Joseph G, Varghese V. Analyzing Airbnb customer experience feedback using text mining. In: Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications. 2019.
34.
go back to reference Lucini FR, Tonetto LM, Fogliatto FS, Anzanello MJ. Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews. J Air Transp Manag. 2020;18:9. Lucini FR, Tonetto LM, Fogliatto FS, Anzanello MJ. Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews. J Air Transp Manag. 2020;18:9.
35.
go back to reference Georgakopoulou A, Spilioti T. The routledge handbook of language and digital communication. In: The Routledge Handbook of Language and Digital Communication. 2015. p. 1–434. Georgakopoulou A, Spilioti T. The routledge handbook of language and digital communication. In: The Routledge Handbook of Language and Digital Communication. 2015. p. 1–434.
36.
go back to reference Wang Z. Anonymity, social image, and the competition for volunteers: A case study of the online market for reviews. BE J Econ Anal Policy. 2010;10:1. Wang Z. Anonymity, social image, and the competition for volunteers: A case study of the online market for reviews. BE J Econ Anal Policy. 2010;10:1.
38.
go back to reference Barbosa RRL, Sánchez-Alonso S, Sicilia-Urban MA. Evaluating hotels rating prediction based on sentiment analysis services. Aslib J Inf Manag. 2015; Barbosa RRL, Sánchez-Alonso S, Sicilia-Urban MA. Evaluating hotels rating prediction based on sentiment analysis services. Aslib J Inf Manag. 2015;
40.
go back to reference Cosma G, Acampora G. Neuro-fuzzy sentiment analysis for customer review rating prediction. In: Studies in Computational Intelligence. 2016. Cosma G, Acampora G. Neuro-fuzzy sentiment analysis for customer review rating prediction. In: Studies in Computational Intelligence. 2016.
41.
go back to reference Li Y, Wang S, Ma Y, Pan Q, Cambria E. Popularity prediction on vacation rental websites. Neurocomputing. 2020;12:6. Li Y, Wang S, Ma Y, Pan Q, Cambria E. Popularity prediction on vacation rental websites. Neurocomputing. 2020;12:6.
45.
go back to reference Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;12:233. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;12:233.
Metadata
Title
Rating prediction of peer-to-peer accommodation through attributes and topics from customer review
Authors
Athor Subroto
Marcel Christianis
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Journal of Big Data / Issue 1/2021
Electronic ISSN: 2196-1115
DOI
https://doi.org/10.1186/s40537-020-00395-6

Other articles of this Issue 1/2021

Journal of Big Data 1/2021 Go to the issue

Premium Partner