Skip to main content
Top
Published in: Journal of Dynamical and Control Systems 1/2017

29-03-2016

Real-Formal Orbital Rigidity for Germs of Real Analytic Vector Fields on the Real Plane

Author: Jessica Angélica Jaurez-Rosas

Published in: Journal of Dynamical and Control Systems | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For \(n \geqslant 2\), we consider \(\mathcal {V}^{\mathbb {R}}_{n}\) the class of germs of real analytic vector fields on \(\left (\mathbb {R}^{2}, \widehat {0}\right )\) with zero (n−1)-jet and nonzero n-jet. We prove, for generic germs of \(\mathcal {V}^{\mathbb {R}}_{n}\), that the real-formal orbital equivalence implies the real-analytic orbital equivalence, that is, the real-formal orbital rigidity takes place. This is the real analytic version of Voronin’s formal orbital rigidity theorem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
We shall say that an analytic (formal) orbital equivalence is strict if the linear part of the analytic (formal) change of coordinates is the identity matrix and the constant term of the analytic scalar function (the real formal series) is 1. In a similar way, we define a strict real-analytic (real-formal) orbital equivalence.
 
2
A cross-section to \(\mathbb {D}_{\mathbb {C}}\) at a point \(\mathfrak {d} \in \mathbb {D}_{\mathbb {C}}\) is the germ of a complex curve which is contained in \(\mathbb {M}_{\mathbb {C}}\) and intersects \(\mathbb {D}_{\mathbb {C}}\) transversally at \(\mathfrak {d}\).
 
3
This map is defined modulo conjugacy, the latter given by the changes of cross-sections.
 
4
This group modulo a simultaneous conjugacy will be referred to as vanishing holonomy group of \(\widetilde {\mathcal {F}}^{\mathbb {C}}_{\upsilon }\), being independent of a cross-section or even a base point
 
5
It is important to notice that when \(\mathfrak {p}_{i} \in \mathbb {D}_{\mathbb {R}}\), S i is the complexification of a real analytic curve, that is, the Taylor series of ϕ i has real coefficients. On the other hand, if \(\mathfrak {p}_{i} \notin \mathbb {D}_{\mathbb {R}}\) then there exists another singular point \(\mathfrak {p}_{j} \notin \mathbb {D}_{\mathbb {R}}\) which is the conjugate point of \(\mathfrak {p}_{i}\). Furthermore, S j is the conjugate curve of S i , that is, if \(\phi _{i} (x) = {\sum }_{k \geqslant 1} a_{k} x^{k}\) then \(\phi _{j} (x) = {\sum }_{k \geqslant 1} \overline {a}_{k} x^{k}\).
 
6
Given f a germ of holomorphic map at \(\widehat {0} \in \mathbb {C}^{n}\), the conjugated function of f, denoted by \(\overline {f(\bar {z})}\), is the germ of holomorphic function at \(\widehat {0} \in \mathbb {C}^{n}\) satisfying the following condition: if \(f(z) = {\sum }_{\mathbf {k} \in \mathbb {N}^{n}} a_{\mathbf {k}} z^{\mathbf {k}}\) then \(\overline {f(\bar {z})} = {\sum }_{\mathbf {k} \in \mathbb {N}^{n}} \overline {a}_{\mathbf {k}} z^{\mathbf {k}}\).
 
7
A formal transformation \(\mathbf {x} (u,x) \in \mathbb {C}[[u-u_{0},x-x_{0}]]\) is a solution of the differential equation (3) intersecting \(\widehat {\Gamma }\) if the following formal equalities are satisfied: \(\tfrac {\text {d} \, \mathbf {x}}{\text {d} \, u} = Q (u, \mathbf {x}(u,x))\) and x 0+Φ(x) = x(u 0+Ψ(x),x).
 
8
From the uniqueness of solutions of nonautonomous formal differential equations (depending on a parameter) intersecting a fixed formal cross-section (see [15]), the formal transformation \(\widetilde {H}_{1} \left (\mathbf {x}^{(1)}_{j} \left (u, u_{j}; {\Phi }^{(1)}_{j} (x)\right ), u \right )\) is equal to \( \mathbf {x}^{(2)}_{j} \left (\widetilde {H}_{2} \left (\mathbf {x}^{(1)}_{j}\left (u, u_{j}; {\Phi }^{(1)}_{j} (x)\right ), u \right ), \widetilde {H}_{2}\left ({\Phi }^{(1)}_{j} (x), u_{j}\right ); \widetilde {H}_{1} \left ({\Phi }^{(1)}_{j} (x), u_{j}\right )\right ) \, . \) The expression (6) is obtained by taking u = u j+1 in the previous equivalent transformations.
 
9
We can prove the real-formal orbital rigidity theorem without this condition, but in this case the proofs of the following results would be a little more complicated.
 
10
That is, given k+1≤im there exists k+1≤jm such that \(\mathcal {L}_{j}\) is the conjugate of \(\mathcal {L}_{i}\), that is, if \(\psi _{i} (x) = {\sum }_{r \geqslant 1} a_{r} x^{r}\) then \(\psi _{j} (x) = {\sum }_{r \geqslant 1} \bar {a}_{r} x^{r}\), where \(\bar {a}\) is the complex conjugate of \(a \in \mathbb {C}\).
 
11
Since F i (x)=(f i (x),ψ i f i (x)) where f i is a germ of biholomorphism at \(0 \in \mathbb {C}\), the coefficients of the Taylor series of f j are the complex conjugates of the respective coefficients of the Taylor series of f i . As a consequence, F l is the complexification of a germ of real analytic diffeomorphism whenever 1≤lk.
 
12
Considering the nonautonomous real analytic equation \(\tfrac {\text {d} \, x}{\text {d} \, u} = \vartheta _{j}(x,u)\) whose extended fase portrait coincides with the foliation \(H_{0} (\widetilde {\mathcal {F}}_{\vartheta })\), \(\widetilde {H}_{0}\) will be the inverse of \( (x,u) \mapsto (\phi _{\vartheta _{j}} (u,x),u)\), where \(\phi _{\vartheta _{j}}(u,x)\) is the flow of the nonautonomous equation satisfying \(\phi _{\vartheta _{j}}(q_{j},x) = x\).
 
13
Since \(\mathcal {J}_{j,x} (0, q_{j}) \neq 0\), \(\mathcal {J}_{j,u} (0, q_{j}) = 0\) (Lemma 6) and the curve T j is transversal to the divisor \(\mathbb {D}_{\mathbb {R}}\), \(\mathcal {J}_{j} \vert _{T_{j}}\) is invertible in a neighborhood of (0,q j )∈T j .
 
Literature
1.
go back to reference Arnold VI, Gusein-Zade SM, Varchenko AN. Singularities of differentiable maps, vol I. The classification of critical points, caustics and wave fronts. Boston: Birkhäuser Boston Inc.; 1985.MATH Arnold VI, Gusein-Zade SM, Varchenko AN. Singularities of differentiable maps, vol I. The classification of critical points, caustics and wave fronts. Boston: Birkhäuser Boston Inc.; 1985.MATH
2.
go back to reference Arnold VI. Geometrical Methods in the theory of ordinary differential equations. New York: Springer; 1983.CrossRefMATH Arnold VI. Geometrical Methods in the theory of ordinary differential equations. New York: Springer; 1983.CrossRefMATH
3.
go back to reference Bogdanov RI. Local orbital normal forms of vector fields on the plane. (Russian) Trudy Sem Petrovsk 1979;5:51–84.MathSciNet Bogdanov RI. Local orbital normal forms of vector fields on the plane. (Russian) Trudy Sem Petrovsk 1979;5:51–84.MathSciNet
4.
go back to reference Brjuno AD. Analytic form of differential equations, I, II. (Russian) Trudy Moskov Mat Obshch 1971;25:119–262. 1972;26:199-239. English translation: Trans. Moscow Math. Soc. 1971;25:119-262. 1972;26:199–239.MathSciNet Brjuno AD. Analytic form of differential equations, I, II. (Russian) Trudy Moskov Mat Obshch 1971;25:119–262. 1972;26:199-239. English translation: Trans. Moscow Math. Soc. 1971;25:119-262. 1972;26:199–239.MathSciNet
5.
go back to reference Cerveau D, Moussu R. Groups d’automorphismes de \((\mathbb {C}, 0)\) et équations différentielles y d y+…=0. (French) Bull Soc Math France 1988;116:459–488.MathSciNetMATH Cerveau D, Moussu R. Groups d’automorphismes de \((\mathbb {C}, 0)\) et équations différentielles y d y+…=0. (French) Bull Soc Math France 1988;116:459–488.MathSciNetMATH
6.
go back to reference Dulac H. Recherches sur les points singuliers des équations différentielles. Journal de l’École Polytechnique 1904;2(9):1–125.MATH Dulac H. Recherches sur les points singuliers des équations différentielles. Journal de l’École Polytechnique 1904;2(9):1–125.MATH
7.
go back to reference Écalle J. Théorie itérative, Introduction à la théorie des invariants holomorphes. J Math Pures et Appl 1975;54:183–258.MATH Écalle J. Théorie itérative, Introduction à la théorie des invariants holomorphes. J Math Pures et Appl 1975;54:183–258.MATH
8.
go back to reference Écalle J. 1981. Les fonctions résurgentes, Tome I, II. Orsay: Publications Mathématiques d’Orsay 81, 5. Université de Paris-Sud, Département de Mathématique. Écalle J. 1981. Les fonctions résurgentes, Tome I, II. Orsay: Publications Mathématiques d’Orsay 81, 5. Université de Paris-Sud, Département de Mathématique.
9.
go back to reference Elizarov PM, Ilyashenko YuS. Remarks on orbital analytic classification of germs of vector fields. (Russian) Mat Sb (N.S.) 1983;121(1):111–126.MathSciNet Elizarov PM, Ilyashenko YuS. Remarks on orbital analytic classification of germs of vector fields. (Russian) Mat Sb (N.S.) 1983;121(1):111–126.MathSciNet
10.
go back to reference Elizarov PM, Ilyashenko YuS, Shcherbakov AA, Voronin SM. Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane. Nonlinear Stokes phenomena, Adv. Soviet Math. Providence, RI: Am. Math. Soc.; 1993. p. 57–105. Elizarov PM, Ilyashenko YuS, Shcherbakov AA, Voronin SM. Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane. Nonlinear Stokes phenomena, Adv. Soviet Math. Providence, RI: Am. Math. Soc.; 1993. p. 57–105.
11.
go back to reference Gunning RC. Introduction to holomorphic functions of several variables, vol I, Function Theory. California: Wadsworth and Brooks/Cole, Advance Books and Software; 1990. Gunning RC. Introduction to holomorphic functions of several variables, vol I, Function Theory. California: Wadsworth and Brooks/Cole, Advance Books and Software; 1990.
12.
go back to reference Ilyashenko YuS. Dulac’s memoir “On limit cycles” and related questions of the local theory of differential equations. (Russian) Uspekhi Mat Nauk 1985;40(6):41–78.MathSciNet Ilyashenko YuS. Dulac’s memoir “On limit cycles” and related questions of the local theory of differential equations. (Russian) Uspekhi Mat Nauk 1985;40(6):41–78.MathSciNet
13.
go back to reference Ilyashenko YuS. Nonlinear Stokes phenomena. Nonlinear Stokes phenomena, Adv. Soviet Math. Providence: American Mathematical Society; 1993. p. 1–55. Ilyashenko YuS. Nonlinear Stokes phenomena. Nonlinear Stokes phenomena, Adv. Soviet Math. Providence: American Mathematical Society; 1993. p. 1–55.
14.
go back to reference Ilyashenko YuS, Yakovenko S. Lectures on Analytic Differential Equations, Graduate studies in mathematics. Vol. 86. Providence: American Mathematical Society; 2008.MATH Ilyashenko YuS, Yakovenko S. Lectures on Analytic Differential Equations, Graduate studies in mathematics. Vol. 86. Providence: American Mathematical Society; 2008.MATH
16.
go back to reference Loray F. Rèduction formalle des singularities cuspidales de champs de vecteurs analytiques. J Diff Equations 1999;158:152–173.MathSciNetCrossRef Loray F. Rèduction formalle des singularities cuspidales de champs de vecteurs analytiques. J Diff Equations 1999;158:152–173.MathSciNetCrossRef
17.
18.
go back to reference Mattei J-F, Moussu R. Holonomie et intégrales premières. (French) Ann Sci École Norm Sup 1980;13(4):469–523.MathSciNetMATH Mattei J-F, Moussu R. Holonomie et intégrales premières. (French) Ann Sci École Norm Sup 1980;13(4):469–523.MathSciNetMATH
19.
go back to reference Martinet J, Ramis J-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. (French) Inst Hautes Études Sci Publ Math 1982;55:63–164.MathSciNetCrossRefMATH Martinet J, Ramis J-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. (French) Inst Hautes Études Sci Publ Math 1982;55:63–164.MathSciNetCrossRefMATH
20.
go back to reference Martinet J, Ramis J-P. Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann Sci École Norm Sup 1983;16(4): 571–621.MathSciNetMATH Martinet J, Ramis J-P. Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann Sci École Norm Sup 1983;16(4): 571–621.MathSciNetMATH
21.
go back to reference Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Rigidity theorem for degenerate singular points of germs of holomorphic vector fields in the complex plane. J Dynam Control Systems 2001;7(4):553– 599.MathSciNetCrossRefMATH Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Rigidity theorem for degenerate singular points of germs of holomorphic vector fields in the complex plane. J Dynam Control Systems 2001;7(4):553– 599.MathSciNetCrossRefMATH
22.
go back to reference Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in \((\mathbb {C}^2, 0)\). Mosc Math J 2005;5(1):171–206.MathSciNetMATH Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in \((\mathbb {C}^2, 0)\). Mosc Math J 2005;5(1):171–206.MathSciNetMATH
23.
go back to reference Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Analytic normal forms of germs of holomorphic dicritic foliations. Mosc Math J 2008;8(3):521–545.MathSciNetMATH Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Analytic normal forms of germs of holomorphic dicritic foliations. Mosc Math J 2008;8(3):521–545.MathSciNetMATH
24.
go back to reference Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Thom’s problem for the orbital analytic classification of degenerate singular points of holomorphic vector fields on the plane. Moscow Mathematical Journal 2012;12(4):825–862.MathSciNetMATH Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Thom’s problem for the orbital analytic classification of degenerate singular points of holomorphic vector fields on the plane. Moscow Mathematical Journal 2012;12(4):825–862.MathSciNetMATH
25.
go back to reference Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Formal and Analytic normal forms of germs of holomorphic nondicritic foliations. Journal of Singularities 2014; 9:168–192.MathSciNetMATH Ortiz-Bobadilla L, Rosales-González E, Voronin SM. Formal and Analytic normal forms of germs of holomorphic nondicritic foliations. Journal of Singularities 2014; 9:168–192.MathSciNetMATH
27.
go back to reference Poincaré H. Note sur les propriétés des fonctions définies par des équations differéntielles. Journal de l’École Polytechnique 1878;45:13–26.MATH Poincaré H. Note sur les propriétés des fonctions définies par des équations differéntielles. Journal de l’École Polytechnique 1878;45:13–26.MATH
28.
29.
go back to reference Shcherbakov AA. Topological and analytical conjugacy of noncommutative groups of germs of conformal mappings. Trudy Sem Petrovsk 1984;10:170–196.MathSciNetMATH Shcherbakov AA. Topological and analytical conjugacy of noncommutative groups of germs of conformal mappings. Trudy Sem Petrovsk 1984;10:170–196.MathSciNetMATH
30.
31.
go back to reference Takens F. Normal forms for certain singularities of vector fields, Colloque International sur l’Analyse et la Topologie Différentielle. Ann Inst Fourier (Grenoble) 1973;23(2):163–195.MathSciNetCrossRef Takens F. Normal forms for certain singularities of vector fields, Colloque International sur l’Analyse et la Topologie Différentielle. Ann Inst Fourier (Grenoble) 1973;23(2):163–195.MathSciNetCrossRef
32.
go back to reference Voronin SM, Grintchy AA. An analytic classifications of saddle resonant singular points of holomorphic vector fields in the complex plane. J Dynam Control Systems 1996; 2(1):21–53.MathSciNetCrossRefMATH Voronin SM, Grintchy AA. An analytic classifications of saddle resonant singular points of holomorphic vector fields in the complex plane. J Dynam Control Systems 1996; 2(1):21–53.MathSciNetCrossRefMATH
33.
go back to reference Voronin SM, Meshcheryakova YI. Analytic classification of generic degenerate elementary singular points of gems of holomorphic vector fields on the complex plane. (Russian) Izv Vyssh Uchebn Zaved Mat 2002;46(1):13–16. Translation in Russian Math (Iz. VUZ). 2002;46(1):11–14.MathSciNetMATH Voronin SM, Meshcheryakova YI. Analytic classification of generic degenerate elementary singular points of gems of holomorphic vector fields on the complex plane. (Russian) Izv Vyssh Uchebn Zaved Mat 2002;46(1):13–16. Translation in Russian Math (Iz. VUZ). 2002;46(1):11–14.MathSciNetMATH
34.
go back to reference Voronin SM. Analytic Classification of Germs of Conformal Mappings \((\mathbb {C}, 0) \longrightarrow (\mathbb {C}, 0)\) with Identity Linear Part. Funct An and its Appl 1981;15(1):1–17.MathSciNetCrossRef Voronin SM. Analytic Classification of Germs of Conformal Mappings \((\mathbb {C}, 0) \longrightarrow (\mathbb {C}, 0)\) with Identity Linear Part. Funct An and its Appl 1981;15(1):1–17.MathSciNetCrossRef
35.
go back to reference Voronin SM. Orbital analytic equivalence of degenerate singular points of holomorphic vector fields on the complex plane. Tr Mat Inst Steklova 1997;213:30–49.MathSciNetMATH Voronin SM. Orbital analytic equivalence of degenerate singular points of holomorphic vector fields on the complex plane. Tr Mat Inst Steklova 1997;213:30–49.MathSciNetMATH
36.
go back to reference Yoccoz J-C. Linéarisation des germes de diffeómorphismes holomorphes de \((\mathbb {C}, 0)\). C R Acad Sci Paris Sér I Math 1988;306(1):55–58.MathSciNetMATH Yoccoz J-C. Linéarisation des germes de diffeómorphismes holomorphes de \((\mathbb {C}, 0)\). C R Acad Sci Paris Sér I Math 1988;306(1):55–58.MathSciNetMATH
37.
go back to reference Yoccoz J-C. Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque 1995;231:3–88.MathSciNet Yoccoz J-C. Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque 1995;231:3–88.MathSciNet
Metadata
Title
Real-Formal Orbital Rigidity for Germs of Real Analytic Vector Fields on the Real Plane
Author
Jessica Angélica Jaurez-Rosas
Publication date
29-03-2016
Publisher
Springer US
Published in
Journal of Dynamical and Control Systems / Issue 1/2017
Print ISSN: 1079-2724
Electronic ISSN: 1573-8698
DOI
https://doi.org/10.1007/s10883-016-9314-y

Other articles of this Issue 1/2017

Journal of Dynamical and Control Systems 1/2017 Go to the issue

Premium Partners