Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Realization of Point-of-Darkness and Extreme Phase Singularity in Nanophotonic Cavities

Authors : Sreekanth K. V., Mohamed ElKabbash, Vincenzo Caligiuri, Ranjan Singh, Antonio De Luca, Giuseppe Strangi

Published in: New Directions in Thin Film Nanophotonics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Aharonov–Bohm effect [1] and the Berry phase [2] are the two important physical phenomena that depends on non-trivial behavior of phase. In particular, singular photonics relies on the abrupt phase changes. The maximum phase change occurs at the point-of-darkness where the incident light is completely absorbed. This phenomenon has been widely investigated using different material systems through the concept of topological darkness [3]. However, to realize topological darkness, sub-wavelength nanostructures are required which demand intense nanofabrication steps. In this chapter, we demonstrate a new approach to realize point-of-darkness and extreme phase singularity using lithography-free metal-dielectric multilayer thin film stacks. We further demonstrate the potential applications of this concept in ultra-sensitive label-free biosensing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Kravets VG, Schedin F, Jalil R, Britnell L, Gorbachev RV, Ansell D, Thackray B, Novoselov KS, Geim AK, Kabashin AV, Grigorenko AN (2013) Singular phase nano-optics in plasmonic metamaterials for label-free single molecule detection. Nat Mater 12:304–309ADSCrossRef Kravets VG, Schedin F, Jalil R, Britnell L, Gorbachev RV, Ansell D, Thackray B, Novoselov KS, Geim AK, Kabashin AV, Grigorenko AN (2013) Singular phase nano-optics in plasmonic metamaterials for label-free single molecule detection. Nat Mater 12:304–309ADSCrossRef
4.
go back to reference Atwater HA, Polman A (2005) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213ADSCrossRef Atwater HA, Polman A (2005) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213ADSCrossRef
5.
go back to reference Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402ADSCrossRef Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402ADSCrossRef
6.
go back to reference Sreekanth KV, Alapan Y, Rashed AR, Gurkan UA, Strangi G (2016) A multiband perfect absorber based on hyperbolic metamaterials. Sci Rep 6:26272ADSCrossRef Sreekanth KV, Alapan Y, Rashed AR, Gurkan UA, Strangi G (2016) A multiband perfect absorber based on hyperbolic metamaterials. Sci Rep 6:26272ADSCrossRef
7.
go back to reference Lin CH, Chern RL, Lin HY (2011) Polarization-independent broad-band nearly perfect absorbers in the visible regime. Opt Exp 19:415–424ADSCrossRef Lin CH, Chern RL, Lin HY (2011) Polarization-independent broad-band nearly perfect absorbers in the visible regime. Opt Exp 19:415–424ADSCrossRef
8.
go back to reference Brewster D (1815) On the laws which regulate the polarization of light by reflection from transparent bodies. Philos Trans R Soc London 05:125–159ADS Brewster D (1815) On the laws which regulate the polarization of light by reflection from transparent bodies. Philos Trans R Soc London 05:125–159ADS
9.
go back to reference Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin
10.
go back to reference Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-reversed lasing and interferometric control of absorption. Science 331:889–892ADSCrossRef Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-reversed lasing and interferometric control of absorption. Science 331:889–892ADSCrossRef
11.
go back to reference Feng L, Xu YL, Fegadolli WS, Lu MH, Oliveira JEB, Almeida VR, Chen YF, Scherer A (2013) Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater 12:108–113ADSCrossRef Feng L, Xu YL, Fegadolli WS, Lu MH, Oliveira JEB, Almeida VR, Chen YF, Scherer A (2013) Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater 12:108–113ADSCrossRef
12.
go back to reference Hales TC (2007) The Jordon Curve theorem, formally and informally. Am Math Monthly 114:882–894CrossRef Hales TC (2007) The Jordon Curve theorem, formally and informally. Am Math Monthly 114:882–894CrossRef
13.
go back to reference Malassis L, Masse P, Treguer-Delapierre M, Mornet S, Weisbecker P, Barois P, Simovski CR, Kravets VG, Grigorenko AN (2014) Topological darkness in self-assembled plasmonic metamaterials. Adv Mater 26:324–330CrossRef Malassis L, Masse P, Treguer-Delapierre M, Mornet S, Weisbecker P, Barois P, Simovski CR, Kravets VG, Grigorenko AN (2014) Topological darkness in self-assembled plasmonic metamaterials. Adv Mater 26:324–330CrossRef
14.
go back to reference Aristov AI, Manousidaki M, Danilov A, Terzaki K, Fotakis C, Farsari M, Kabashin AV (2016) 3D plasmonic crystal metamaterials for ultra-sensitive biosensing. Sci Rep 6:25380ADSCrossRef Aristov AI, Manousidaki M, Danilov A, Terzaki K, Fotakis C, Farsari M, Kabashin AV (2016) 3D plasmonic crystal metamaterials for ultra-sensitive biosensing. Sci Rep 6:25380ADSCrossRef
15.
go back to reference Song H, Zhang N, Duan J, Liu Z, Singer MH, Ji D, Cheney AR, Zeng X, Chen B, Jiang S, Gan Q (2017) Dispersion topological darkness at multiple wavelengths and polarization states. Adv Opt Mater 5:1700166CrossRef Song H, Zhang N, Duan J, Liu Z, Singer MH, Ji D, Cheney AR, Zeng X, Chen B, Jiang S, Gan Q (2017) Dispersion topological darkness at multiple wavelengths and polarization states. Adv Opt Mater 5:1700166CrossRef
16.
go back to reference Svedendahl M, Verre R, Kall M (2014) Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light Sci Appl 3:e220 Svedendahl M, Verre R, Kall M (2014) Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light Sci Appl 3:e220
17.
go back to reference Sreekanth KV, Sreejith S, Han S, Mishra A, Chen X, Sun H, Lim CT, Singh R (2018) Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nat Commun 8:36 Sreekanth KV, Sreejith S, Han S, Mishra A, Chen X, Sun H, Lim CT, Singh R (2018) Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nat Commun 8:36
18.
go back to reference Kats MA, Blanchard R, Genevet P, Capasso F (2013) Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12:20–24ADSCrossRef Kats MA, Blanchard R, Genevet P, Capasso F (2013) Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12:20–24ADSCrossRef
20.
go back to reference Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3–15CrossRef Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3–15CrossRef
21.
go back to reference Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan UA, De Luca A, Strangi G (2016) Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 15:621–627ADSCrossRef Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan UA, De Luca A, Strangi G (2016) Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 15:621–627ADSCrossRef
22.
go back to reference Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotech 7:379–382ADSCrossRef Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotech 7:379–382ADSCrossRef
23.
go back to reference Wu C, Adato R, Arju N, Yanikk AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular manolayers. Nat Mater 11:69–75ADSCrossRef Wu C, Adato R, Arju N, Yanikk AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular manolayers. Nat Mater 11:69–75ADSCrossRef
24.
go back to reference Konopsky VN, Alieva EV (2007) Photonic crystal surface waves for optical biosensors. Anal Chem 79:4729–4735CrossRef Konopsky VN, Alieva EV (2007) Photonic crystal surface waves for optical biosensors. Anal Chem 79:4729–4735CrossRef
25.
go back to reference Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596CrossRef Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596CrossRef
26.
go back to reference Kabashin AV, Nikitin PI (1997) Interferometer based on a surface-plasmon resonance for sensor applications. Quant Electron 27:653–654ADSCrossRef Kabashin AV, Nikitin PI (1997) Interferometer based on a surface-plasmon resonance for sensor applications. Quant Electron 27:653–654ADSCrossRef
27.
go back to reference Wu SY, Ho HP, Law WC, Lin C, Kong SK (2004) Highly sensitive differential phase sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration. Opt Lett 29:2378–2380ADSCrossRef Wu SY, Ho HP, Law WC, Lin C, Kong SK (2004) Highly sensitive differential phase sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration. Opt Lett 29:2378–2380ADSCrossRef
28.
go back to reference Sreekanth KV, Sreejith S, Alapan Y, Sitti M, Lim CT, Singh R (2019) Microfluidics integrated lithography-free nanophotonic biosensor for the detection of small molecules. Adv Opt Mater 7:1801313CrossRef Sreekanth KV, Sreejith S, Alapan Y, Sitti M, Lim CT, Singh R (2019) Microfluidics integrated lithography-free nanophotonic biosensor for the detection of small molecules. Adv Opt Mater 7:1801313CrossRef
29.
go back to reference Sreekanth KV, Alapan Y, ElKabbash M, Wen AM, Ilker E, Hinczewski M, Gurkan UA, Steinmetz NF, Strangi G (2016) Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials. Adv Opt Mater 4:1767–1772CrossRef Sreekanth KV, Alapan Y, ElKabbash M, Wen AM, Ilker E, Hinczewski M, Gurkan UA, Steinmetz NF, Strangi G (2016) Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials. Adv Opt Mater 4:1767–1772CrossRef
Metadata
Title
Realization of Point-of-Darkness and Extreme Phase Singularity in Nanophotonic Cavities
Authors
Sreekanth K. V.
Mohamed ElKabbash
Vincenzo Caligiuri
Ranjan Singh
Antonio De Luca
Giuseppe Strangi
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8891-0_2

Premium Partners