Skip to main content
Top

2022 | OriginalPaper | Chapter

Recent Advances in Metallic Honeycomb Structure

Authors : Ya-fei Zhang, Jing-wei Liang, Hong-tao Liu, Hong-xue Mi, Yi-hua Dou

Published in: Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Honeycomb structures have been widely used in aerospace, machinery manufacturing, transportation and other fields due to their unique structure and excellent mechanical properties in recent years. However, due to the complexity of this field, there are still many issues that need to be further studied on the basis of existing research. This article summarizes the research progress of metallic honeycomb structure from four aspects: traditional honeycomb structures, negative Poisson’s ratio honeycomb structures, hierarchical honeycomb structures, and embedded honeycomb structures. Basing on the potential application value of honeycomb structures, several suggestions were given for subsequent research on the honeycomb structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nan, J.F., Wang, Y.W., Wang, B.W., et al.: Effect of structure parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading. Int. J. Impact Eng. 132, 103313 (2019) Nan, J.F., Wang, Y.W., Wang, B.W., et al.: Effect of structure parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading. Int. J. Impact Eng. 132, 103313 (2019)
2.
go back to reference Chen, Y.J., Zuo, X.Q., Shi, Q.N., et al.: Development and application of honeycombed metal. Mater. Rev. 17(12), 32–35 (2003) Chen, Y.J., Zuo, X.Q., Shi, Q.N., et al.: Development and application of honeycombed metal. Mater. Rev. 17(12), 32–35 (2003)
3.
go back to reference Wang, Z.G.: Recent advances in novel metallic honeycomb structure. Compos. B Eng. 166(1), 731–741 (2019)CrossRef Wang, Z.G.: Recent advances in novel metallic honeycomb structure. Compos. B Eng. 166(1), 731–741 (2019)CrossRef
4.
go back to reference Cao, W.Y.: Numerical Study of Static and Dynamic Behavior of Honeycomb Material-Based Structures. Tianjin University (2014) Cao, W.Y.: Numerical Study of Static and Dynamic Behavior of Honeycomb Material-Based Structures. Tianjin University (2014)
5.
go back to reference Gibson, L.J., Ashby, M.F., Schajer, G.S., et al.: The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. Ser. A382(1782), 25–42 (1982) Gibson, L.J., Ashby, M.F., Schajer, G.S., et al.: The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. Ser. A382(1782), 25–42 (1982)
6.
go back to reference Burton, W.S., Noor, A.K.: Assessment of continuum models for sandwich panel honeycomb cores. Comput. Methods Appl. Mech. Eng. 145(3), 341–360 (1997)MATHCrossRef Burton, W.S., Noor, A.K.: Assessment of continuum models for sandwich panel honeycomb cores. Comput. Methods Appl. Mech. Eng. 145(3), 341–360 (1997)MATHCrossRef
7.
go back to reference Sun, D.Q., Zhang, W.H., Sun, Y.J.: Elastic modulus and material efficiency of aluminum honeycomb cores. Mech. Eng. 30(1), 35–40 (2008) Sun, D.Q., Zhang, W.H., Sun, Y.J.: Elastic modulus and material efficiency of aluminum honeycomb cores. Mech. Eng. 30(1), 35–40 (2008)
8.
go back to reference Balawi, S., Abot, J.L.: A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos. Struct. 84(2), 147–158 (2007)CrossRef Balawi, S., Abot, J.L.: A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos. Struct. 84(2), 147–158 (2007)CrossRef
9.
go back to reference Sardar, M., Gibson, L.J.: Effective elastic properties of periodic hexagonal honeycombs. Mech. Mater. 91, 226–240 (2015)CrossRef Sardar, M., Gibson, L.J.: Effective elastic properties of periodic hexagonal honeycombs. Mech. Mater. 91, 226–240 (2015)CrossRef
10.
go back to reference Qiu, K.P., Wang, Z., Zhang, W.H.: The effective elastic properties of flexible hexagonal honeycomb cores with consideration for geometric nonlinearity. Aerosp. Sci. Technol. 58, 258–266 (2016)CrossRef Qiu, K.P., Wang, Z., Zhang, W.H.: The effective elastic properties of flexible hexagonal honeycomb cores with consideration for geometric nonlinearity. Aerosp. Sci. Technol. 58, 258–266 (2016)CrossRef
11.
go back to reference Li, Y.M., Hoang, M.P., Abbes, B., et al.: Analytical homogenization for stretch and bending of honeycomb sandwich plates with skin and height effects. Compos. Struct. 120, 406–416 (2015)CrossRef Li, Y.M., Hoang, M.P., Abbes, B., et al.: Analytical homogenization for stretch and bending of honeycomb sandwich plates with skin and height effects. Compos. Struct. 120, 406–416 (2015)CrossRef
12.
go back to reference Li, Y.M., Hoang, M.P., Abbes, B., et al.: Analytical homogenization for in-plane shear and torsion of honeycomb sandwich plates with skin and height effects. Appl. Mech. Mater. 752–753, 804–811 (2015)CrossRef Li, Y.M., Hoang, M.P., Abbes, B., et al.: Analytical homogenization for in-plane shear and torsion of honeycomb sandwich plates with skin and height effects. Appl. Mech. Mater. 752–753, 804–811 (2015)CrossRef
13.
go back to reference Sun, D.Q., Sun, Y.J., Zheng, B.B., et al.: Simulation analysis of the out-of-plane quasi-static compression of hexagonal honeycomb cores. Packaging Eng. 35(1), 18–22 (2014) Sun, D.Q., Sun, Y.J., Zheng, B.B., et al.: Simulation analysis of the out-of-plane quasi-static compression of hexagonal honeycomb cores. Packaging Eng. 35(1), 18–22 (2014)
14.
go back to reference Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties. Mater. Sci. Technol. 123(2), 282–283 (1988)MATH Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties. Mater. Sci. Technol. 123(2), 282–283 (1988)MATH
15.
go back to reference Sun, D.Q., Zhang, X.Q.: In-plane quasi-static mechanical behavior of concave hexagonal honeycomb cores. J. Shaanxi Univ. Sci. Technol. 33(5), 153–156 (2015) Sun, D.Q., Zhang, X.Q.: In-plane quasi-static mechanical behavior of concave hexagonal honeycomb cores. J. Shaanxi Univ. Sci. Technol. 33(5), 153–156 (2015)
16.
go back to reference Lu, Z.X., Ji, K.: In-plane dynamic crushing of chiral and anti-chiral honeycombs. J. Vib. Shock36(21), 16–22+39 (2017) Lu, Z.X., Ji, K.: In-plane dynamic crushing of chiral and anti-chiral honeycombs. J. Vib. Shock36(21), 16–22+39 (2017)
17.
go back to reference Li, D., Dong, L., Lakes, R.S.: A unit cell structure with tunable Poisson’s ratio from positive to negative. Mater. Lett. 164(1), 456–459 (2016)CrossRef Li, D., Dong, L., Lakes, R.S.: A unit cell structure with tunable Poisson’s ratio from positive to negative. Mater. Lett. 164(1), 456–459 (2016)CrossRef
18.
go back to reference Kelsey, S., Gellatly, R.A., Clark, B.W.: The shear modulus off oil honeycomb cores. Aircr. Eng. Aerosp. Technol. 30(10), 294–302 (1958)CrossRef Kelsey, S., Gellatly, R.A., Clark, B.W.: The shear modulus off oil honeycomb cores. Aircr. Eng. Aerosp. Technol. 30(10), 294–302 (1958)CrossRef
19.
go back to reference Fu, M.H., Xu, O.T.: Discussion on the out-of-plane equivalent shear modulus of honeycomb cores. Chin. J. Solid Mech. 35(4), 334–340 (2014) Fu, M.H., Xu, O.T.: Discussion on the out-of-plane equivalent shear modulus of honeycomb cores. Chin. J. Solid Mech. 35(4), 334–340 (2014)
20.
go back to reference Chen, A., Davalos, J.F.: A solution including skin effect for stiffness and stress field of sandwich honeycomb core. Int. J. Solids Struct. 42(9), 2711–2739 (2005)MATHCrossRef Chen, A., Davalos, J.F.: A solution including skin effect for stiffness and stress field of sandwich honeycomb core. Int. J. Solids Struct. 42(9), 2711–2739 (2005)MATHCrossRef
21.
go back to reference Xu, X.F., Qiao, P.Z., Davalos, J.F.: Transverse shear stiffness of composite honeycomb core with general configuration. J. Eng. Mech. 127(11), 1144–1151 (2001) Xu, X.F., Qiao, P.Z., Davalos, J.F.: Transverse shear stiffness of composite honeycomb core with general configuration. J. Eng. Mech. 127(11), 1144–1151 (2001)
22.
go back to reference Xu, X.F., Qiao, P.Z.: Homogenized elastic properties of honeycomb sandwich with skin effect. Int. J. Solids Struct. 39(8), 2153–2188 (2002)MATHCrossRef Xu, X.F., Qiao, P.Z.: Homogenized elastic properties of honeycomb sandwich with skin effect. Int. J. Solids Struct. 39(8), 2153–2188 (2002)MATHCrossRef
23.
go back to reference Papka, S.D., Kyriakides, S.: Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia 46(8), 2765–2776 (1998)MATHCrossRef Papka, S.D., Kyriakides, S.: Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia 46(8), 2765–2776 (1998)MATHCrossRef
24.
go back to reference Jang, W.-Y., Kyriakides, S.: On the buckling and crushing of expanded honeycomb. Int. J. Mech. Sci. 91, 81–90 (2015)CrossRef Jang, W.-Y., Kyriakides, S.: On the buckling and crushing of expanded honeycomb. Int. J. Mech. Sci. 91, 81–90 (2015)CrossRef
25.
go back to reference Sun, D.Q., Gong, K., Li, Z.G., et al.: Dynamics of triangular honeycombs under in-plane crushing loadings. J. Shaanxi Univ. Sci. Technol. 31(1), 98–105 (2013) Sun, D.Q., Gong, K., Li, Z.G., et al.: Dynamics of triangular honeycombs under in-plane crushing loadings. J. Shaanxi Univ. Sci. Technol. 31(1), 98–105 (2013)
26.
go back to reference Sun, D.Q., Sun, Y.J., Zheng, B.B.: In-plane dynamics of square honeycomb cores. Packaging Eng. 35(3), 1–5 (2014) Sun, D.Q., Sun, Y.J., Zheng, B.B.: In-plane dynamics of square honeycomb cores. Packaging Eng. 35(3), 1–5 (2014)
27.
go back to reference Fu, C.Y., Luo, X.G., Sun, D.Q.: In-plane dynamic mechanics of circular honeycomb cores. Packaging Eng. 37(19), 27–32 (2016) Fu, C.Y., Luo, X.G., Sun, D.Q.: In-plane dynamic mechanics of circular honeycomb cores. Packaging Eng. 37(19), 27–32 (2016)
28.
go back to reference Rapaka, D., Pandey, M., Annabattula, R.K.: Effect of defects on the dynamic compressive behavior of cellular solids. Int. J. Mech. Sci. 170, 1–36 (2020)CrossRef Rapaka, D., Pandey, M., Annabattula, R.K.: Effect of defects on the dynamic compressive behavior of cellular solids. Int. J. Mech. Sci. 170, 1–36 (2020)CrossRef
29.
go back to reference Liu, P.F., Li, X.K., Li, Z.B.: Finite element analysis of dynamic mechanical responses of aluminum honeycomb sandwich structures under low-velocity impact. J. Fail. Anal. Prev. 17(6), 1202–1207 (2017)CrossRef Liu, P.F., Li, X.K., Li, Z.B.: Finite element analysis of dynamic mechanical responses of aluminum honeycomb sandwich structures under low-velocity impact. J. Fail. Anal. Prev. 17(6), 1202–1207 (2017)CrossRef
30.
go back to reference Qi, J.Q., Duan, Y.C., Li, C., et al.: Dynamic response of aluminum honeycomb sandwich panel under low speed impact. Fiber Reinf. Plast./Compos. (5), 5–11 (2019) Qi, J.Q., Duan, Y.C., Li, C., et al.: Dynamic response of aluminum honeycomb sandwich panel under low speed impact. Fiber Reinf. Plast./Compos. (5), 5–11 (2019)
31.
go back to reference Wowk, D., Marsden, C.: Effects of skin thickness and core density on the residual dent depth in aerospace sandwich panels. Int. J. Comput. Methods Exp. Measur. 4(3), 336–344 (2016) Wowk, D., Marsden, C.: Effects of skin thickness and core density on the residual dent depth in aerospace sandwich panels. Int. J. Comput. Methods Exp. Measur. 4(3), 336–344 (2016)
32.
go back to reference He, W.T., Yao, L., Meng, X.J., et al.: Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct. 137, 411–432 (2019)CrossRef He, W.T., Yao, L., Meng, X.J., et al.: Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct. 137, 411–432 (2019)CrossRef
33.
go back to reference Yan, F.F., Xu, X.D.: Negative Poisson’s ratio honeycomb structure and its applications in structure design of morphing aircraft. China Mech. Eng. 23(5), 542–546 (2012) Yan, F.F., Xu, X.D.: Negative Poisson’s ratio honeycomb structure and its applications in structure design of morphing aircraft. China Mech. Eng. 23(5), 542–546 (2012)
34.
go back to reference Cun, S.T., Wang, B., Zhang, K.: In-plane dynamic compression and energy absorption of honeycomb with negative Poisson’s ratio. Chin. J. Appl. Mech. 34(5), 919–924+1015 (2017) Cun, S.T., Wang, B., Zhang, K.: In-plane dynamic compression and energy absorption of honeycomb with negative Poisson’s ratio. Chin. J. Appl. Mech. 34(5), 919–924+1015 (2017)
35.
go back to reference Yin, Y.F., Du, Y.X., Zhou, P., et al.: In-plane dynamic analysis of reentrant honeycomb Structure under low speed impact. J. China Three Gorges Univ. (Nat. Sci.) 39(5), 90–94+2 (2017) Yin, Y.F., Du, Y.X., Zhou, P., et al.: In-plane dynamic analysis of reentrant honeycomb Structure under low speed impact. J. China Three Gorges Univ. (Nat. Sci.) 39(5), 90–94+2 (2017)
36.
go back to reference Zhang, X.C., Liu, Y., Wang, B., et al.: Effects of defects on the in-plane dynamic crushing of metal honeycombs. Int. J. Mech. Sci. 52(10), 1290–1298 (2010)CrossRef Zhang, X.C., Liu, Y., Wang, B., et al.: Effects of defects on the in-plane dynamic crushing of metal honeycombs. Int. J. Mech. Sci. 52(10), 1290–1298 (2010)CrossRef
37.
go back to reference Li, Z., Wang, Y.J., Liu, J.X., et al.: Influence of missing cell on in-plane dynamic behavior of honeycomb. J. Nanjing Univ. Sci. Technol. 43(5), 541–547 (2019) Li, Z., Wang, Y.J., Liu, J.X., et al.: Influence of missing cell on in-plane dynamic behavior of honeycomb. J. Nanjing Univ. Sci. Technol. 43(5), 541–547 (2019)
38.
go back to reference Liu, K.Y., Yan, Y., Ji, J.J.: Mechanical analysis of a new type of hollow honeycomb structure. Sci. Technol. Vis. (10), 4–5 (2017) Liu, K.Y., Yan, Y., Ji, J.J.: Mechanical analysis of a new type of hollow honeycomb structure. Sci. Technol. Vis. (10), 4–5 (2017)
39.
go back to reference Ma, F.W., Liang, H.Y., Zhao, Y., et al.: In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio. J. Vib. Shock 38(17), 81–87+127 (2019) Ma, F.W., Liang, H.Y., Zhao, Y., et al.: In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio. J. Vib. Shock 38(17), 81–87+127 (2019)
40.
go back to reference Su, J.L., Wu, J.D., Liu, Y.L.: Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial. J. Mater. Eng. 47(8), 49–58 (2019) Su, J.L., Wu, J.D., Liu, Y.L.: Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial. J. Mater. Eng. 47(8), 49–58 (2019)
41.
go back to reference Grima, J.N., Gatt, R., Alderson, A., et al.: On the potential of connected stars as auxetic systems. Mol. Simul. 31(13), 925–935 (2005)CrossRef Grima, J.N., Gatt, R., Alderson, A., et al.: On the potential of connected stars as auxetic systems. Mol. Simul. 31(13), 925–935 (2005)CrossRef
42.
go back to reference Gong, X.B., Jian, H., Scarpa, F., et al.: Zero Poisson’s ratio cellular structure for two-dimensional morphing applications. Compos. Struct. 134(15), 384–392 (2015)CrossRef Gong, X.B., Jian, H., Scarpa, F., et al.: Zero Poisson’s ratio cellular structure for two-dimensional morphing applications. Compos. Struct. 134(15), 384–392 (2015)CrossRef
43.
go back to reference Ajdari, A., Nayeb-Hashemi, H., Vaziri, A.: Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int. J. Solids Struct. 48(3–4), 506–516 (2011)MATHCrossRef Ajdari, A., Nayeb-Hashemi, H., Vaziri, A.: Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int. J. Solids Struct. 48(3–4), 506–516 (2011)MATHCrossRef
44.
go back to reference Ajdari, A., Jahromi, B.H., Papadopoulos, J., et al.: Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 49(11–12), 1413–1419 (2012)CrossRef Ajdari, A., Jahromi, B.H., Papadopoulos, J., et al.: Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 49(11–12), 1413–1419 (2012)CrossRef
45.
go back to reference Oftadeh, R., Haghpanah, B., Papadopoulos, J., et al.: Mechanics of anisotropic hierarchical honeycombs. Int. J. Mech. Sci. 81(4), 126–136 (2014)CrossRef Oftadeh, R., Haghpanah, B., Papadopoulos, J., et al.: Mechanics of anisotropic hierarchical honeycombs. Int. J. Mech. Sci. 81(4), 126–136 (2014)CrossRef
46.
go back to reference Zeng, L., Jiang, W.G., Wu, Y.: Influence of structure parameters on mechanical properties of self-similar hierarchical honeycombs. Acta Materiae Compositae Sinica 34(9), 2005–2011 (2017) Zeng, L., Jiang, W.G., Wu, Y.: Influence of structure parameters on mechanical properties of self-similar hierarchical honeycombs. Acta Materiae Compositae Sinica 34(9), 2005–2011 (2017)
47.
go back to reference Sun, G.Y., Jiang, H., Fang, J.G., et al.: Crash worthiness of vertex based hierarchical honeycombs in out-of-plane impact. Mater. Des. 110(15), 705–719 (2016)CrossRef Sun, G.Y., Jiang, H., Fang, J.G., et al.: Crash worthiness of vertex based hierarchical honeycombs in out-of-plane impact. Mater. Des. 110(15), 705–719 (2016)CrossRef
48.
go back to reference Li, D., Yin, J.H., Dong, L., et al.: Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio. Smart Mater. Struct. 26(2), 1–7 (2017)CrossRef Li, D., Yin, J.H., Dong, L., et al.: Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio. Smart Mater. Struct. 26(2), 1–7 (2017)CrossRef
49.
go back to reference Tan, H.L., He, Z.C., Li, K.X., et al.: In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio. Compos. Struct. 229, 1–15 (2019)CrossRef Tan, H.L., He, Z.C., Li, K.X., et al.: In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio. Compos. Struct. 229, 1–15 (2019)CrossRef
50.
go back to reference Mahmoudabadi, M.Z., Sadighi, M.: A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb - Theoretical and experimental. Mater. Sci. Eng. 530(15), 333–343 (2011)CrossRef Mahmoudabadi, M.Z., Sadighi, M.: A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb - Theoretical and experimental. Mater. Sci. Eng. 530(15), 333–343 (2011)CrossRef
51.
go back to reference Liu, Q., Chen, H.: Research on the effect of EPP foam filling on the compressive properties of aluminum honeycomb. Fiber Reinf. Plast. Compos. 3(3), 49–52 (2017) Liu, Q., Chen, H.: Research on the effect of EPP foam filling on the compressive properties of aluminum honeycomb. Fiber Reinf. Plast. Compos. 3(3), 49–52 (2017)
52.
go back to reference Liu, Q., He, Z.H., Chen, H.: Effect of EPP foam filling on the dynamic impact properties of aluminum honeycomb. Fiber Reinf. Plast. Compos. 4(4), 45–50 (2018) Liu, Q., He, Z.H., Chen, H.: Effect of EPP foam filling on the dynamic impact properties of aluminum honeycomb. Fiber Reinf. Plast. Compos. 4(4), 45–50 (2018)
53.
go back to reference Zhou, H.Y., Jia, K.C., Wang, X.J., et al.: In-plane compression properties of negative Poisson’s ratio sandwich structure filled with foam concrete. Acta Materiae Compositae Sinica 37(8), 2005–2014 (2019) Zhou, H.Y., Jia, K.C., Wang, X.J., et al.: In-plane compression properties of negative Poisson’s ratio sandwich structure filled with foam concrete. Acta Materiae Compositae Sinica 37(8), 2005–2014 (2019)
54.
go back to reference Mozafari, H., Khatami, S., Molatefi, H.: Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train express-Numerical study. Mater. Des. 66(5), 400–411 (2015)CrossRef Mozafari, H., Khatami, S., Molatefi, H.: Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train express-Numerical study. Mater. Des. 66(5), 400–411 (2015)CrossRef
55.
go back to reference Liu, P., Wang, X.Y., Huang, Z.: Dynamic behavior simulation of foam filled honeycomb using material point method. Acta Materiae Compositae Sinica 37(9), 2230–2239 (2019) Liu, P., Wang, X.Y., Huang, Z.: Dynamic behavior simulation of foam filled honeycomb using material point method. Acta Materiae Compositae Sinica 37(9), 2230–2239 (2019)
56.
go back to reference Lu, L., Lu, Z.J., Yan, M., et al.: Energy-absorption and impact stability of series honeycombs. J. Central South Univ. (Sci. Technol.) 48(7), 1951–1956 (2017) Lu, L., Lu, Z.J., Yan, M., et al.: Energy-absorption and impact stability of series honeycombs. J. Central South Univ. (Sci. Technol.) 48(7), 1951–1956 (2017)
57.
go back to reference Chen, D., Lu, Z.J., Xiong, Y.F.: Research on the design of guide plate for tandem honeycomb stability maintance. J. Mech. Strength 40(6), 1399–1405 (2018) Chen, D., Lu, Z.J., Xiong, Y.F.: Research on the design of guide plate for tandem honeycomb stability maintance. J. Mech. Strength 40(6), 1399–1405 (2018)
58.
go back to reference Li, X., Yang, Z.H., Chen, B.: Comparison and simulation of equivalent mechanical parameters of quasi-honeycomb and hexagonal honeycomb. J. China Three Gorges Univ. (Nat. Sci.) 41(2), 88–92 (2019) Li, X., Yang, Z.H., Chen, B.: Comparison and simulation of equivalent mechanical parameters of quasi-honeycomb and hexagonal honeycomb. J. China Three Gorges Univ. (Nat. Sci.) 41(2), 88–92 (2019)
59.
go back to reference Lai, Y.H., Jiang, W.G., Wu, Y.: Molecular dynamics simulation on mechanical properties of nano self- similar hierarchical honeycomb AL. Acta Materiae Compositae Sinica 36(4), 946–953 (2019) Lai, Y.H., Jiang, W.G., Wu, Y.: Molecular dynamics simulation on mechanical properties of nano self- similar hierarchical honeycomb AL. Acta Materiae Compositae Sinica 36(4), 946–953 (2019)
Metadata
Title
Recent Advances in Metallic Honeycomb Structure
Authors
Ya-fei Zhang
Jing-wei Liang
Hong-tao Liu
Hong-xue Mi
Yi-hua Dou
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-9427-1_14