Skip to main content
Top

2023 | OriginalPaper | Chapter

3. Recent Development of Multifunctional Nanocomposites Based on Bacterial Nanocellulose

Authors : Sisi Cao, Qisheng Jiang, Srikanth Singamaneni

Published in: Emerging Nanotechnologies in Nanocellulose

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bacterial nanocellulose (BNC) is an emerging nanomaterial that has drawn immense attention due to its unique physical and chemical properties. This chapter mainly focuses on the recent developments in the design, synthesis, and application of novel BNC-based multifunctional nanocomposites. The robust bio-mediated synthesis of nanocellulose network when combined with versatile in situ and post-modification strategies enables the incorporation of various functional nanomaterials into the nanocellulose network. These BNC-based multifunctional nanocomposites are highly promising for water treatment, energy harvesting, chemical sensing, catalysis, and life sciences. However, there are several outstanding challenges associated with BNC such as high production cost and durability that need to be addressed before these composites can be widely deployed in the real world. Despite the challenges, owing to their unique structure and properties, BNC-based nanocomposites will attract increased for various applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Jin, Y. Nishiyama, M. Wada, S. Kuga, Nanofibrillar cellulose aerogels. Colloids Surf. A 240(1–3), 63–67 (2004)CrossRef H. Jin, Y. Nishiyama, M. Wada, S. Kuga, Nanofibrillar cellulose aerogels. Colloids Surf. A 240(1–3), 63–67 (2004)CrossRef
2.
go back to reference D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)CrossRef D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)CrossRef
3.
go back to reference H. Valo, S. Arola, P. Laaksonen, M. Torkkeli, L. Peltonen, M.B. Linder, R. Serimaa, S. Kuga, J. Hirvonen, T. Laaksonen, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 50(1), 69–77 (2013)CrossRef H. Valo, S. Arola, P. Laaksonen, M. Torkkeli, L. Peltonen, M.B. Linder, R. Serimaa, S. Kuga, J. Hirvonen, T. Laaksonen, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 50(1), 69–77 (2013)CrossRef
4.
go back to reference L. Falk, H. Emmerich, P. Antje, L. Dieter, T. Stefanie, N. Marie-Alexandra, W. Martin, R. Thomas, Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties 2ndICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung: Int. J. Biol. Chem. Phys. Technol. Wood 63(1), 3–11 (2009) L. Falk, H. Emmerich, P. Antje, L. Dieter, T. Stefanie, N. Marie-Alexandra, W. Martin, R. Thomas, Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties 2ndICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung: Int. J. Biol. Chem. Phys. Technol. Wood 63(1), 3–11 (2009)
5.
go back to reference P. Gatenholm, D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2010)CrossRef P. Gatenholm, D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2010)CrossRef
6.
go back to reference F.M. Portela da Gama, F. Dourado, Bacterial nanocellulose: what future? BioImpacts: BI 8(1), 1–3 (2018) F.M. Portela da Gama, F. Dourado, Bacterial nanocellulose: what future? BioImpacts: BI 8(1), 1–3 (2018)
7.
go back to reference Z.-Y. Wu, H.-W. Liang, L.-F. Chen, B.-C. Hu, S.-H. Yu, Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 49(1), 96–105 (2016)CrossRef Z.-Y. Wu, H.-W. Liang, L.-F. Chen, B.-C. Hu, S.-H. Yu, Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 49(1), 96–105 (2016)CrossRef
8.
go back to reference M. Shoda, Y. Sugano, Recent advances in bacterial cellulose production. Biotechnol. Bioproc. E 10(1), 1–8 (2005)CrossRef M. Shoda, Y. Sugano, Recent advances in bacterial cellulose production. Biotechnol. Bioproc. E 10(1), 1–8 (2005)CrossRef
9.
go back to reference S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, M. Uryu, The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater. Sci. 24(9), 3141–3145 (1989)CrossRef S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, M. Uryu, The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater. Sci. 24(9), 3141–3145 (1989)CrossRef
10.
go back to reference S. Salmon, S.M. Hudson, Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J. Macromol. Sci. Part C: Polym. Rev. 37(2), 199–276 (1997) S. Salmon, S.M. Hudson, Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J. Macromol. Sci. Part C: Polym. Rev. 37(2), 199–276 (1997)
11.
go back to reference D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)CrossRef D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)CrossRef
12.
go back to reference Y. Huang, C. Zhu, J. Yang, Y. Nie, C. Chen, D. Sun, Recent advances in bacterial cellulose. Cellulose 21(1), 1–30 (2014)CrossRef Y. Huang, C. Zhu, J. Yang, Y. Nie, C. Chen, D. Sun, Recent advances in bacterial cellulose. Cellulose 21(1), 1–30 (2014)CrossRef
13.
go back to reference W. Hu, S. Chen, J. Yang, Z. Li, H. Wang, Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd. Polym. 101, 1043–1060 (2014)CrossRef W. Hu, S. Chen, J. Yang, Z. Li, H. Wang, Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd. Polym. 101, 1043–1060 (2014)CrossRef
14.
go back to reference L. Tian, Q. Jiang, K.K. Liu, J. Luan, R.R. Naik, S. Singamaneni, Bacterial nanocellulose-based flexible surface enhanced Raman scattering substrate. Adv. Mater. Interf. 3(15), n/a-n/a (2016) L. Tian, Q. Jiang, K.K. Liu, J. Luan, R.R. Naik, S. Singamaneni, Bacterial nanocellulose-based flexible surface enhanced Raman scattering substrate. Adv. Mater. Interf. 3(15), n/a-n/a (2016)
15.
go back to reference L. Tian, J. Luan, K.-K. Liu, Q. Jiang, S. Tadepalli, M.K. Gupta, R.R. Naik, S. Singamaneni, Plasmonic biofoam: a versatile optically active material. Nano Lett. 16(1), 609–616 (2016)CrossRef L. Tian, J. Luan, K.-K. Liu, Q. Jiang, S. Tadepalli, M.K. Gupta, R.R. Naik, S. Singamaneni, Plasmonic biofoam: a versatile optically active material. Nano Lett. 16(1), 609–616 (2016)CrossRef
16.
go back to reference L.-F. Chen, Z.-H. Huang, H.-W. Liang, H.-L. Gao, S.-H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Func. Mater. 24(32), 5104–5111 (2014)CrossRef L.-F. Chen, Z.-H. Huang, H.-W. Liang, H.-L. Gao, S.-H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Func. Mater. 24(32), 5104–5111 (2014)CrossRef
17.
go back to reference L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu, S.-H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8), 7092–7102 (2012)CrossRef L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu, S.-H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8), 7092–7102 (2012)CrossRef
18.
go back to reference S. Tong, M. Zheng, Y. Lu, Z. Lin, X. Zhang, P. He, H. Zhou, Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries. Chem. Commun. 51(34), 7302–7304 (2015)CrossRef S. Tong, M. Zheng, Y. Lu, Z. Lin, X. Zhang, P. He, H. Zhou, Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries. Chem. Commun. 51(34), 7302–7304 (2015)CrossRef
19.
go back to reference B. Wang, X. Li, B. Luo, J. Yang, X. Wang, Q. Song, S. Chen, L. Zhi, Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9(14), 2399–2404 (2013)CrossRef B. Wang, X. Li, B. Luo, J. Yang, X. Wang, Q. Song, S. Chen, L. Zhi, Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9(14), 2399–2404 (2013)CrossRef
20.
go back to reference H.-W. Liang, Q.-F. Guan, Z. Zhu, L.-T. Song, H.-B. Yao, X. Lei, S.-H. Yu, Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 (2012)CrossRef H.-W. Liang, Q.-F. Guan, Z. Zhu, L.-T. Song, H.-B. Yao, X. Lei, S.-H. Yu, Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 (2012)CrossRef
21.
go back to reference R.T. Olsson, M.A.S. Azizi Samir, G. Salazar Alvarez, L. Belova, V. Strom, L.A. Berglund, O. Ikkala, J. Nogues, U.W. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nano 5(8), 584–588 (2010) R.T. Olsson, M.A.S. Azizi Samir, G. Salazar Alvarez, L. Belova, V. Strom, L.A. Berglund, O. Ikkala, J. Nogues, U.W. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nano 5(8), 584–588 (2010)
22.
go back to reference Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. n/a-n/a (2016) Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. n/a-n/a (2016)
23.
go back to reference D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Y.-S. Jun, Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy 53, 949–957 (2018)CrossRef D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Y.-S. Jun, Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy 53, 949–957 (2018)CrossRef
24.
go back to reference W. Lei, D. Jin, H. Liu, Z. Tong, H. Zhang, An overview of bacterial cellulose in flexible electrochemical energy storage. Chemsuschem 13(15), 3731–3753 (2020)CrossRef W. Lei, D. Jin, H. Liu, Z. Tong, H. Zhang, An overview of bacterial cellulose in flexible electrochemical energy storage. Chemsuschem 13(15), 3731–3753 (2020)CrossRef
25.
go back to reference P. Gatenholm, D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2011)CrossRef P. Gatenholm, D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2011)CrossRef
26.
go back to reference L. Tian, Q. Jiang, K.-K. Liu, J. Luan, R.R. Naik, S. Singamaneni, Bacterial nanocellulose-based flexible surface enhanced raman scattering substrate. Adv. Mater. Interf. 3(15), 1600214 (2016)CrossRef L. Tian, Q. Jiang, K.-K. Liu, J. Luan, R.R. Naik, S. Singamaneni, Bacterial nanocellulose-based flexible surface enhanced raman scattering substrate. Adv. Mater. Interf. 3(15), 1600214 (2016)CrossRef
27.
go back to reference Y.J. Kang, S.-J. Chun, S.-S. Lee, B.-Y. Kim, J.H. Kim, H. Chung, S.-Y. Lee, W. Kim, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6(7), 6400–6406 (2012)CrossRef Y.J. Kang, S.-J. Chun, S.-S. Lee, B.-Y. Kim, J.H. Kim, H. Chung, S.-Y. Lee, W. Kim, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6(7), 6400–6406 (2012)CrossRef
28.
go back to reference S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang, Y. Shen, Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 4(10), 1301655 (2014)CrossRef S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang, Y. Shen, Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 4(10), 1301655 (2014)CrossRef
29.
go back to reference M. Yuan, Q. Jiang, K. Liu, S. Singamaneni, S. Chakrabartty, Towards an integrated qr code biosensor: light-driven sample acquisition and bacterial cellulose paper substrate. IEEE Trans. Biomed. Circ. Syst. 12(3), 452–460 (2018)CrossRef M. Yuan, Q. Jiang, K. Liu, S. Singamaneni, S. Chakrabartty, Towards an integrated qr code biosensor: light-driven sample acquisition and bacterial cellulose paper substrate. IEEE Trans. Biomed. Circ. Syst. 12(3), 452–460 (2018)CrossRef
30.
go back to reference R.T. Olsson, M.A.S. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Ström, L.A. Berglund, O. Ikkala, J. Nogués, U.W. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5, 584 (2010)CrossRef R.T. Olsson, M.A.S. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Ström, L.A. Berglund, O. Ikkala, J. Nogués, U.W. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5, 584 (2010)CrossRef
31.
go back to reference E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv, D. Horák, N. Pourreza, A. Merkoçi, Nanopaper as an optical sensing platform. ACS Nano 9(7), 7296–7305 (2015)CrossRef E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv, D. Horák, N. Pourreza, A. Merkoçi, Nanopaper as an optical sensing platform. ACS Nano 9(7), 7296–7305 (2015)CrossRef
32.
go back to reference M. Chen, H. Kang, Y. Gong, J. Guo, H. Zhang, R. Liu, Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl. Mater. Interf. 7(39), 21717–21726 (2015)CrossRef M. Chen, H. Kang, Y. Gong, J. Guo, H. Zhang, R. Liu, Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl. Mater. Interf. 7(39), 21717–21726 (2015)CrossRef
33.
go back to reference F. Lai, Y.-E. Miao, Y. Huang, Y. Zhang, T. Liu, Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interf. 8(6), 3558–3566 (2016)CrossRef F. Lai, Y.-E. Miao, Y. Huang, Y. Zhang, T. Liu, Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interf. 8(6), 3558–3566 (2016)CrossRef
34.
go back to reference H. Wei, W. Leng, J. Song, C. Liu, M.R. Willner, Q. Huang, W. Zhou, P.J. Vikesland, Real-time monitoring of ligand exchange kinetics on gold nanoparticle surfaces enabled by hot spot-normalized surface-enhanced raman scattering. Environ. Sci. Technol. 53(2), 575–585 (2019)CrossRef H. Wei, W. Leng, J. Song, C. Liu, M.R. Willner, Q. Huang, W. Zhou, P.J. Vikesland, Real-time monitoring of ligand exchange kinetics on gold nanoparticle surfaces enabled by hot spot-normalized surface-enhanced raman scattering. Environ. Sci. Technol. 53(2), 575–585 (2019)CrossRef
35.
go back to reference G. Yang, J. Xie, Y. Deng, Y. Bian, F. Hong, Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd. Polym. 87(4), 2482–2487 (2012)CrossRef G. Yang, J. Xie, Y. Deng, Y. Bian, F. Hong, Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd. Polym. 87(4), 2482–2487 (2012)CrossRef
36.
go back to reference T. Zhang, W. Wang, D. Zhang, X. Zhang, Y. Ma, Y. Zhou, L. Qi, Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv. Func. Mater. 20(7), 1152–1160 (2010)CrossRef T. Zhang, W. Wang, D. Zhang, X. Zhang, Y. Ma, Y. Zhou, L. Qi, Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv. Func. Mater. 20(7), 1152–1160 (2010)CrossRef
37.
go back to reference X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohyd. Polym. 76(4), 509–512 (2009)CrossRef X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohyd. Polym. 76(4), 509–512 (2009)CrossRef
38.
go back to reference H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao, H. Zhu, Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018)CrossRef H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao, H. Zhu, Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018)CrossRef
39.
go back to reference Z.-Y. Wu, C. Li, H.-W. Liang, J.-F. Chen, S.-H. Yu, Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 52(10), 2925–2929 (2013)CrossRef Z.-Y. Wu, C. Li, H.-W. Liang, J.-F. Chen, S.-H. Yu, Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 52(10), 2925–2929 (2013)CrossRef
40.
go back to reference L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25(34), 4746–4752 (2013)CrossRef L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25(34), 4746–4752 (2013)CrossRef
41.
go back to reference L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6(11), 3331–3338 (2013)CrossRef L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6(11), 3331–3338 (2013)CrossRef
42.
go back to reference H.-W. Liang, Z.-Y. Wu, L.-F. Chen, C. Li, S.-H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366–376 (2015)CrossRef H.-W. Liang, Z.-Y. Wu, L.-F. Chen, C. Li, S.-H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366–376 (2015)CrossRef
43.
go back to reference C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Func. Mater. 24(25), 3953–3961 (2014)CrossRef C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Func. Mater. 24(25), 3953–3961 (2014)CrossRef
44.
go back to reference Z.-Y. Wu, H.-W. Liang, C. Li, B.-C. Hu, X.-X. Xu, Q. Wang, J.-F. Chen, S.-H. Yu, Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 7(12), 1861–1872 (2014)CrossRef Z.-Y. Wu, H.-W. Liang, C. Li, B.-C. Hu, X.-X. Xu, Q. Wang, J.-F. Chen, S.-H. Yu, Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 7(12), 1861–1872 (2014)CrossRef
45.
go back to reference S. Yamanaka, J. Sugiyama, Structural modification of bacterial cellulose. Cellulose 7(3), 213–225 (2000)CrossRef S. Yamanaka, J. Sugiyama, Structural modification of bacterial cellulose. Cellulose 7(3), 213–225 (2000)CrossRef
46.
go back to reference D.R. Ruka, G.P. Simon, K.M. Dean, In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd. Polym. 92(2), 1717–1723 (2013)CrossRef D.R. Ruka, G.P. Simon, K.M. Dean, In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd. Polym. 92(2), 1717–1723 (2013)CrossRef
47.
go back to reference L.L. Zhou, D.P. Sun, L.Y. Hu, Y.W. Li, J.Z. Yang, Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34(7), 483 (2007)CrossRef L.L. Zhou, D.P. Sun, L.Y. Hu, Y.W. Li, J.Z. Yang, Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34(7), 483 (2007)CrossRef
48.
go back to reference H.-C. Huang, L.-C. Chen, S.-B. Lin, C.-P. Hsu, H.-H. Chen, In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Biores. Technol. 101(15), 6084–6091 (2010)CrossRef H.-C. Huang, L.-C. Chen, S.-B. Lin, C.-P. Hsu, H.-H. Chen, In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Biores. Technol. 101(15), 6084–6091 (2010)CrossRef
49.
go back to reference H. Luo, G. Xiong, Z. Yang, S.R. Raman, H. Si, Y. Wan, A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv. 4(28), 14369–14372 (2014)CrossRef H. Luo, G. Xiong, Z. Yang, S.R. Raman, H. Si, Y. Wan, A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv. 4(28), 14369–14372 (2014)CrossRef
50.
go back to reference W.-I. Park, H.-S. Kim, S.-M. Kwon, Y.-H. Hong, H.-J. Jin, Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium. Carbohyd. Polym. 77(3), 457–463 (2009)CrossRef W.-I. Park, H.-S. Kim, S.-M. Kwon, Y.-H. Hong, H.-J. Jin, Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium. Carbohyd. Polym. 77(3), 457–463 (2009)CrossRef
51.
go back to reference Z. Yan, S. Chen, H. Wang, B. Wang, J. Jiang, Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohyd. Polym. 74(3), 659–665 (2008)CrossRef Z. Yan, S. Chen, H. Wang, B. Wang, J. Jiang, Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohyd. Polym. 74(3), 659–665 (2008)CrossRef
52.
go back to reference Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28(42), 9400–9407 (2016)CrossRef Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28(42), 9400–9407 (2016)CrossRef
53.
go back to reference Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun, S. Singamaneni, Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017)CrossRef Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun, S. Singamaneni, Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017)CrossRef
54.
go back to reference Q. Jiang, D. Ghim, S. Cao, S. Tadepalli, K.-K. Liu, H. Kwon, J. Luan, Y. Min, Y.-S. Jun, S. Singamaneni, Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol. 53(1), 412–421 (2019)CrossRef Q. Jiang, D. Ghim, S. Cao, S. Tadepalli, K.-K. Liu, H. Kwon, J. Luan, Y. Min, Y.-S. Jun, S. Singamaneni, Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol. 53(1), 412–421 (2019)CrossRef
55.
go back to reference H. Gholami Derami, Q. Jiang, D. Ghim, S. Cao, Y.J. Chandar, J.J. Morrissey, Y.-S. Jun, S. Singamaneni, A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl. Nano Mater. 2(2), 1092–1101 (2019)CrossRef H. Gholami Derami, Q. Jiang, D. Ghim, S. Cao, Y.J. Chandar, J.J. Morrissey, Y.-S. Jun, S. Singamaneni, A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl. Nano Mater. 2(2), 1092–1101 (2019)CrossRef
56.
go back to reference T. Xu, Q. Jiang, D. Ghim, K.-K. Liu, H. Sun, H.G. Derami, Z. Wang, S. Tadepalli, Y.-S. Jun, Q. Zhang, S. Singamaneni, Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small 14(15), 1704006 (2018)CrossRef T. Xu, Q. Jiang, D. Ghim, K.-K. Liu, H. Sun, H.G. Derami, Z. Wang, S. Tadepalli, Y.-S. Jun, Q. Zhang, S. Singamaneni, Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small 14(15), 1704006 (2018)CrossRef
57.
go back to reference Q. Jiang, C. Kacica, T. Soundappan, K.-K. Liu, S. Tadepalli, P. Biswas, S. Singamaneni, An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5(27), 13976–13982 (2017)CrossRef Q. Jiang, C. Kacica, T. Soundappan, K.-K. Liu, S. Tadepalli, P. Biswas, S. Singamaneni, An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5(27), 13976–13982 (2017)CrossRef
58.
go back to reference K.-K. Liu, Q. Jiang, C. Kacica, H.G. Derami, P. Biswas, S. Singamaneni, Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 8(55), 31296–31302 (2018)CrossRef K.-K. Liu, Q. Jiang, C. Kacica, H.G. Derami, P. Biswas, S. Singamaneni, Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 8(55), 31296–31302 (2018)CrossRef
59.
go back to reference S. Cao, P. Rathi, X. Wu, D. Ghim, Y.-S. Jun, S. Singamaneni, Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. n/a (n/a), 2000922 S. Cao, P. Rathi, X. Wu, D. Ghim, Y.-S. Jun, S. Singamaneni, Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. n/a (n/a), 2000922
60.
go back to reference S. Cao, Q. Jiang, X. Wu, D. Ghim, H. Gholami Derami, P.-I. Chou, Y.-S. Jun, S. Singamaneni, Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A 7(42), 24092–24123 (2019)CrossRef S. Cao, Q. Jiang, X. Wu, D. Ghim, H. Gholami Derami, P.-I. Chou, Y.-S. Jun, S. Singamaneni, Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A 7(42), 24092–24123 (2019)CrossRef
61.
go back to reference J.P. Camden, J.A. Dieringer, J. Zhao, R.P. Van Duyne, Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 41(12), 1653–1661 (2008)CrossRef J.P. Camden, J.A. Dieringer, J. Zhao, R.P. Van Duyne, Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 41(12), 1653–1661 (2008)CrossRef
62.
go back to reference H. Ko, S. Singamaneni, V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small 4(10), 1576–1599 (2008)CrossRef H. Ko, S. Singamaneni, V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small 4(10), 1576–1599 (2008)CrossRef
63.
go back to reference A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)CrossRef A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)CrossRef
64.
go back to reference J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010)CrossRef J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010)CrossRef
65.
go back to reference T.Y. Liu, K.T. Tsai, H.H. Wang, Y. Chen, Y.H. Chen, Y.C. Chao, H.H. Chang, C.H. Lin, J.K. Wang, Y. Wang, Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2 (2011) T.Y. Liu, K.T. Tsai, H.H. Wang, Y. Chen, Y.H. Chen, Y.C. Chao, H.H. Chang, C.H. Lin, J.K. Wang, Y. Wang, Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2 (2011)
66.
go back to reference J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)CrossRef J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)CrossRef
67.
go back to reference N. Gandra, A. Abbas, L.M. Tian, S. Singamaneni, Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett. 12(5), 2645–2651 (2012)CrossRef N. Gandra, A. Abbas, L.M. Tian, S. Singamaneni, Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett. 12(5), 2645–2651 (2012)CrossRef
68.
go back to reference L. Tian, K.-K. Liu, M. Fei, S. Tadepalli, S. Cao, J.A. Geldmeier, V.V. Tsukruk, S. Singamaneni, Plasmonic nanogels for unclonable optical tagging. ACS Appl. Mater. Interf. 8(6), 4031–4041 (2016)CrossRef L. Tian, K.-K. Liu, M. Fei, S. Tadepalli, S. Cao, J.A. Geldmeier, V.V. Tsukruk, S. Singamaneni, Plasmonic nanogels for unclonable optical tagging. ACS Appl. Mater. Interf. 8(6), 4031–4041 (2016)CrossRef
69.
go back to reference M. Moskovits, Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36(6–7), 485–496 (2005)CrossRef M. Moskovits, Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36(6–7), 485–496 (2005)CrossRef
70.
go back to reference R.S. Golightly, W.E. Doering, M.J. Natan, Surface-enhanced raman spectroscopy and homeland security: a perfect match? ACS Nano 3(10), 2859–2869 (2009)CrossRef R.S. Golightly, W.E. Doering, M.J. Natan, Surface-enhanced raman spectroscopy and homeland security: a perfect match? ACS Nano 3(10), 2859–2869 (2009)CrossRef
71.
go back to reference J. Homola, Surface Plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRef J. Homola, Surface Plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRef
72.
go back to reference X. Fang, S.R. Ahmad, Detection of explosive vapour using surface-enhanced Raman spectroscopy. Appl. Phys. B 97(3), 723–726 (2009)CrossRef X. Fang, S.R. Ahmad, Detection of explosive vapour using surface-enhanced Raman spectroscopy. Appl. Phys. B 97(3), 723–726 (2009)CrossRef
73.
go back to reference K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390(1), 113–124 (2008)CrossRef K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390(1), 113–124 (2008)CrossRef
74.
go back to reference M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)CrossRef M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)CrossRef
75.
go back to reference C.H. Lee, L.M. Tian, S. Singamaneni, Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl. Mater. Inter. 2(12), 3429–3435 (2010)CrossRef C.H. Lee, L.M. Tian, S. Singamaneni, Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl. Mater. Inter. 2(12), 3429–3435 (2010)CrossRef
76.
go back to reference L. Tian, J.J. Morrissey, R. Kattumenu, N. Gandra, E.D. Kharasch, S. Singamaneni, Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84(22), 9928–9934 (2012)CrossRef L. Tian, J.J. Morrissey, R. Kattumenu, N. Gandra, E.D. Kharasch, S. Singamaneni, Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84(22), 9928–9934 (2012)CrossRef
77.
go back to reference D. Martinak, A. Rudolph, In Explosives detection using an ion mobility spectrometer for airport security, security technology, in Proceedings. The Institute of Electrical and Electronics Engineers 31st Annual 1997 International Carnahan Conference on, 15–17 Oct 1997, pp. 188–189 D. Martinak, A. Rudolph, In Explosives detection using an ion mobility spectrometer for airport security, security technology, in Proceedings. The Institute of Electrical and Electronics Engineers 31st Annual 1997 International Carnahan Conference on, 15–17 Oct 1997, pp. 188–189
78.
go back to reference W.W. Yu, I.M. White, Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal. Chem. 82(23), 9626–9630 (2010)CrossRef W.W. Yu, I.M. White, Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal. Chem. 82(23), 9626–9630 (2010)CrossRef
79.
go back to reference J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié, J.J. Baumberg, G.C. Bazan, S.E.J. Bell, A. Boisen, A.G. Brolo, J. Choo, D. Cialla-May, V. Deckert,L. Fabris, K. Faulds, F.J. García de Abajo, R. Goodacre, D. Graham, A.J. Haes, C.L. Haynes, C. Huck, T. Itoh, M. Käll, J. Kneipp, N.A. Kotov, H. Kuang, E.C. Le Ru, H.K. Lee, J.-F. Li, X.Y. Ling, S.A. Maier, T. Mayerhöfer, M. Moskovits, K. Murakoshi, J.-M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G.C. Schatz, T. Shegai, S. Schlücker, L.-L. Tay, K.G. Thomas, Z.-Q. Tian, R.P. Van Duyne, T. Vo-Dinh, Y. Wang, K.A. Willets, C. Xu, H. Xu, Y. Xu, Y.S. Yamamoto, B. Zhao, L.M. Liz-Marzán, Present and future of surface-enhanced raman scattering. ACS Nano 14(1), 28–117 (2020) J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié, J.J. Baumberg, G.C. Bazan, S.E.J. Bell, A. Boisen, A.G. Brolo, J. Choo, D. Cialla-May, V. Deckert,L. Fabris, K. Faulds, F.J. García de Abajo, R. Goodacre, D. Graham, A.J. Haes, C.L. Haynes, C. Huck, T. Itoh, M. Käll, J. Kneipp, N.A. Kotov, H. Kuang, E.C. Le Ru, H.K. Lee, J.-F. Li, X.Y. Ling, S.A. Maier, T. Mayerhöfer, M. Moskovits, K. Murakoshi, J.-M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G.C. Schatz, T. Shegai, S. Schlücker, L.-L. Tay, K.G. Thomas, Z.-Q. Tian, R.P. Van Duyne, T. Vo-Dinh, Y. Wang, K.A. Willets, C. Xu, H. Xu, Y. Xu, Y.S. Yamamoto, B. Zhao, L.M. Liz-Marzán, Present and future of surface-enhanced raman scattering. ACS Nano 14(1), 28–117 (2020)
80.
go back to reference A. Abbas, L. Tian, J.J. Morrissey, E.D. Kharasch, S. Singamaneni, Hot spot-localized artificial antibodies for label-free plasmonic biosensing. Adv. Func. Mater. 23(14), 1789–1797 (2013)CrossRef A. Abbas, L. Tian, J.J. Morrissey, E.D. Kharasch, S. Singamaneni, Hot spot-localized artificial antibodies for label-free plasmonic biosensing. Adv. Func. Mater. 23(14), 1789–1797 (2013)CrossRef
81.
go back to reference E.C. Le Ru, P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, Amsterdam; Boston, 2009) E.C. Le Ru, P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, Amsterdam; Boston, 2009)
82.
go back to reference M. Elimelech, The global challenge for adequate and safe water. J. Water Supply: Res. Technol. - Aqua 55(1), 3–10 (2006)CrossRef M. Elimelech, The global challenge for adequate and safe water. J. Water Supply: Res. Technol. - Aqua 55(1), 3–10 (2006)CrossRef
83.
go back to reference P.-H. Gleick, ed., The World's Water: The Biennial Report on Freshwater Resources, vol. 8 (Island Press, Washington, DC, 2014) P.-H. Gleick, ed., The World's Water: The Biennial Report on Freshwater Resources, vol. 8 (Island Press, Washington, DC, 2014)
84.
go back to reference J. Eliasson, The rising pressure of global water shortages. Nature 517 (7532) (2014) J. Eliasson, The rising pressure of global water shortages. Nature 517 (7532) (2014)
85.
go back to reference S. Cao, X. Wu, Y. Zhu, R. Gupta, A. Tan, Z. Wang, Y.-S. Jun, S. Singamaneni, Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation. J. Mater. Chem. A 8(10), 5147–5156 (2020)CrossRef S. Cao, X. Wu, Y. Zhu, R. Gupta, A. Tan, Z. Wang, Y.-S. Jun, S. Singamaneni, Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation. J. Mater. Chem. A 8(10), 5147–5156 (2020)CrossRef
86.
go back to reference X. Wu, S. Cao, D. Ghim, Q. Jiang, S. Singamaneni, Y.-S. Jun, A thermally engineered polydopamine and bacterial nanocellulose bilayer membrane for photothermal membrane distillation with bactericidal capability. Nano Energy 79, 105353 (2021)CrossRef X. Wu, S. Cao, D. Ghim, Q. Jiang, S. Singamaneni, Y.-S. Jun, A thermally engineered polydopamine and bacterial nanocellulose bilayer membrane for photothermal membrane distillation with bactericidal capability. Nano Energy 79, 105353 (2021)CrossRef
87.
go back to reference W. Shang, T. Deng, Solar steam generation: steam by thermal concentration 1, 16133 (2016) W. Shang, T. Deng, Solar steam generation: steam by thermal concentration 1, 16133 (2016)
88.
go back to reference H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization 5, 4449 (2014) H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization 5, 4449 (2014)
89.
go back to reference Y.-S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Photothermal membrane water treatment for two worlds. Acc. Chem. Res. 52(5), 1215–1225 (2019)CrossRef Y.-S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Photothermal membrane water treatment for two worlds. Acc. Chem. Res. 52(5), 1215–1225 (2019)CrossRef
90.
go back to reference W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31(29), 1900720 (2019)CrossRef W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31(29), 1900720 (2019)CrossRef
91.
go back to reference A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29(2), 1603504 (2017)CrossRef A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29(2), 1603504 (2017)CrossRef
92.
go back to reference X. Wu, Q. Jiang, D. Ghim, S. Singamaneni, Y.-S. Jun, Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. J. Mater. Chem. A 6(39), 18799–18807 (2018)CrossRef X. Wu, Q. Jiang, D. Ghim, S. Singamaneni, Y.-S. Jun, Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. J. Mater. Chem. A 6(39), 18799–18807 (2018)CrossRef
93.
go back to reference M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452(7185), 301–310 (2008)CrossRef M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452(7185), 301–310 (2008)CrossRef
94.
go back to reference R. Singh, N. Hankins, Emerging Membrane Technology for Sustainable Water Treatment (Elsevier, 2016) R. Singh, N. Hankins, Emerging Membrane Technology for Sustainable Water Treatment (Elsevier, 2016)
95.
go back to reference M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)CrossRef M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)CrossRef
96.
go back to reference P. Le-Clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 284(1–2), 17–53 (2006)CrossRef P. Le-Clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 284(1–2), 17–53 (2006)CrossRef
97.
go back to reference R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. (2016) R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. (2016)
98.
go back to reference H.C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Workshop on membranes in drinking water production technical innovations and health aspects biofouling—the achilles heel of membrane processes. Desalination 113(2), 215–225 (1997)CrossRef H.C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Workshop on membranes in drinking water production technical innovations and health aspects biofouling—the achilles heel of membrane processes. Desalination 113(2), 215–225 (1997)CrossRef
99.
go back to reference R. Komlenic, Rethinking the causes of membrane biofouling. Filtr. Sep. 47(5), 26–28 (2010)CrossRef R. Komlenic, Rethinking the causes of membrane biofouling. Filtr. Sep. 47(5), 26–28 (2010)CrossRef
100.
go back to reference J.S. Baker, L.Y. Dudley, Biofouling in membrane systems—A review. Desalination 118(1–3), 81–89 (1998)CrossRef J.S. Baker, L.Y. Dudley, Biofouling in membrane systems—A review. Desalination 118(1–3), 81–89 (1998)CrossRef
101.
go back to reference R.J. Barnes, J.H. Low, R.R. Bandi, M. Tay, F. Chua, T. Aung, A.G. Fane, S. Kjelleberg, S.A. Rice, Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl. Environ. Microbiol. 81(7), 2515–2524 (2015)CrossRef R.J. Barnes, J.H. Low, R.R. Bandi, M. Tay, F. Chua, T. Aung, A.G. Fane, S. Kjelleberg, S.A. Rice, Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl. Environ. Microbiol. 81(7), 2515–2524 (2015)CrossRef
102.
go back to reference H. Lade, D. Paul, J.H. Kweon, Quorum quenching mediated approaches for control of membrane biofouling. Int. J. Biol. Sci. 10(5), 550–565 (2014)CrossRef H. Lade, D. Paul, J.H. Kweon, Quorum quenching mediated approaches for control of membrane biofouling. Int. J. Biol. Sci. 10(5), 550–565 (2014)CrossRef
103.
go back to reference H.-L. Yang, J.C.-T. Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res. 43(15), 3777–3786 (2009)CrossRef H.-L. Yang, J.C.-T. Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res. 43(15), 3777–3786 (2009)CrossRef
104.
go back to reference A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7(3), 236–241 (2008)CrossRef A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7(3), 236–241 (2008)CrossRef
105.
go back to reference F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1(1), 71–76 (2014)CrossRef F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1(1), 71–76 (2014)CrossRef
106.
go back to reference F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44 (16), 5861–5896 (2015) F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44 (16), 5861–5896 (2015)
107.
go back to reference V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187–207 (2015)CrossRef V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187–207 (2015)CrossRef
108.
go back to reference J.R. Ray, S. Tadepalli, S.Z. Nergiz, K.-K. Liu, L. You, Y. Tang, S. Singamaneni, Y.-S. Jun, Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance. ACS Appl. Mater. Interf. 7(21), 11117–11126 (2015)CrossRef J.R. Ray, S. Tadepalli, S.Z. Nergiz, K.-K. Liu, L. You, Y. Tang, S. Singamaneni, Y.-S. Jun, Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance. ACS Appl. Mater. Interf. 7(21), 11117–11126 (2015)CrossRef
109.
go back to reference Z.J. Ren, A.K. Umble, Water treatment: recover wastewater resources locally. Nature 529(7584), 25–25 (2016)CrossRef Z.J. Ren, A.K. Umble, Water treatment: recover wastewater resources locally. Nature 529(7584), 25–25 (2016)CrossRef
110.
go back to reference A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J. Mol. Catal. A: Chem. 328(1), 8–26 (2010)CrossRef A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J. Mol. Catal. A: Chem. 328(1), 8–26 (2010)CrossRef
111.
go back to reference K. Yu, S. Yang, C. Liu, H. Chen, H. Li, C. Sun, S.A. Boyd, Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environ. Sci. Technol. 46(13), 7318–7326 (2012)CrossRef K. Yu, S. Yang, C. Liu, H. Chen, H. Li, C. Sun, S.A. Boyd, Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environ. Sci. Technol. 46(13), 7318–7326 (2012)CrossRef
112.
go back to reference V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. J. Hazard. Mater. 175(1), 33–44 (2010)CrossRef V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. J. Hazard. Mater. 175(1), 33–44 (2010)CrossRef
113.
go back to reference R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems. Science 313(5790), 1072 (2006)CrossRef R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems. Science 313(5790), 1072 (2006)CrossRef
114.
go back to reference F. Chen, A.S. Gong, M. Zhu, G. Chen, S.D. Lacey, F. Jiang, Y. Li, Y. Wang, J. Dai, Y. Yao, J. Song, B. Liu, K. Fu, S. Das, L. Hu, Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11(4), 4275–4282 (2017)CrossRef F. Chen, A.S. Gong, M. Zhu, G. Chen, S.D. Lacey, F. Jiang, Y. Li, Y. Wang, J. Dai, Y. Yao, J. Song, B. Liu, K. Fu, S. Das, L. Hu, Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11(4), 4275–4282 (2017)CrossRef
115.
go back to reference J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)CrossRef J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)CrossRef
116.
go back to reference D.-H. Kim, J. Song, W.M. Choi, H.-S. Kim, R.-H. Kim, Z. Liu, Y.Y. Huang, K.-C. Hwang, Y.-W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105(48), 18675–18680 (2008)CrossRef D.-H. Kim, J. Song, W.M. Choi, H.-S. Kim, R.-H. Kim, Z. Liu, Y.Y. Huang, K.-C. Hwang, Y.-W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105(48), 18675–18680 (2008)CrossRef
117.
go back to reference S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano 5(8), 574–578 (2010)CrossRef S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano 5(8), 574–578 (2010)CrossRef
118.
go back to reference G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.-H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. van Rens, D.M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)CrossRef G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.-H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. van Rens, D.M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)CrossRef
119.
go back to reference J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. 98(9), 4835–4840 (2001)CrossRef J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. 98(9), 4835–4840 (2001)CrossRef
120.
go back to reference M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)CrossRef M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)CrossRef
121.
go back to reference Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef
122.
go back to reference H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices. Joule 3(3), 613–619 (2019)CrossRef H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices. Joule 3(3), 613–619 (2019)CrossRef
123.
go back to reference Y. Wang, Q. Yang, Y. Zhao, S. Du, C. Zhi, Recent advances in electrode fabrication for flexible energy-storage devices. Adv. Mater. Technol. 4(7), 1900083 (2019)CrossRef Y. Wang, Q. Yang, Y. Zhao, S. Du, C. Zhi, Recent advances in electrode fabrication for flexible energy-storage devices. Adv. Mater. Technol. 4(7), 1900083 (2019)CrossRef
124.
go back to reference Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)CrossRef Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)CrossRef
125.
go back to reference F. Wang, H.-J. Kim, S. Park, C.-D. Kee, S.-J. Kim, I.-K. Oh, Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos. Sci. Technol. 128, 33–40 (2016)CrossRef F. Wang, H.-J. Kim, S. Park, C.-D. Kee, S.-J. Kim, I.-K. Oh, Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos. Sci. Technol. 128, 33–40 (2016)CrossRef
126.
go back to reference X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song, L. Zhi, All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale 8(17), 9146–9150 (2016)CrossRef X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song, L. Zhi, All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale 8(17), 9146–9150 (2016)CrossRef
127.
go back to reference X. Wang, D. Kong, B. Wang, Y. Song, L. Zhi, Activated pyrolysed bacterial cellulose as electrodes for supercapacitors. Sci. China Chem. 59(6), 713–718 (2016)CrossRef X. Wang, D. Kong, B. Wang, Y. Song, L. Zhi, Activated pyrolysed bacterial cellulose as electrodes for supercapacitors. Sci. China Chem. 59(6), 713–718 (2016)CrossRef
128.
go back to reference S. Jiao, A. Zhou, M. Wu, H. Hu, Kirigami patterning of mxene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6(12), 1900529 (2019)CrossRef S. Jiao, A. Zhou, M. Wu, H. Hu, Kirigami patterning of mxene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6(12), 1900529 (2019)CrossRef
129.
go back to reference H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang, J. Liu, J. Huang, M. Liu, Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63, 103836 (2019)CrossRef H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang, J. Liu, J. Huang, M. Liu, Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63, 103836 (2019)CrossRef
130.
go back to reference X. Zhou, Y. Liu, C. Du, Y. Ren, R. Xiao, P. Zuo, G. Yin, Y. Ma, X. Cheng, Y. Gao, Layer-by-layer engineered silicon-based sandwich nanomat as flexible anode for lithium-ion batteries. ACS Appl. Mater. Interf. 11(43), 39970–39978 (2019)CrossRef X. Zhou, Y. Liu, C. Du, Y. Ren, R. Xiao, P. Zuo, G. Yin, Y. Ma, X. Cheng, Y. Gao, Layer-by-layer engineered silicon-based sandwich nanomat as flexible anode for lithium-ion batteries. ACS Appl. Mater. Interf. 11(43), 39970–39978 (2019)CrossRef
131.
go back to reference C. Ding, X. Fu, H. Li, J. Yang, J.-L. Lan, Y. Yu, W.-H. Zhong, X. Yang, An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries. Adv. Func. Mater. 29(43), 1904547 (2019)CrossRef C. Ding, X. Fu, H. Li, J. Yang, J.-L. Lan, Y. Yu, W.-H. Zhong, X. Yang, An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries. Adv. Func. Mater. 29(43), 1904547 (2019)CrossRef
132.
go back to reference H.M.C. Azeredo, H. Barud, C.S. Farinas, V.M. Vasconcellos, A.M. Claro, Bacterial cellulose as a raw material for food and food packaging applications. Front. Sustain. Food Syst. 3 (7) (2019) H.M.C. Azeredo, H. Barud, C.S. Farinas, V.M. Vasconcellos, A.M. Claro, Bacterial cellulose as a raw material for food and food packaging applications. Front. Sustain. Food Syst. 3 (7) (2019)
133.
go back to reference M. Gama, F. Dourado, S. Bielecki, Bacterial Nanocellulose : From Biotechnology to Bio-Economy (2016) M. Gama, F. Dourado, S. Bielecki, Bacterial Nanocellulose : From Biotechnology to Bio-Economy (2016)
134.
go back to reference A.A. Klyosov, Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29(47), 10577–10585 (1990)CrossRef A.A. Klyosov, Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29(47), 10577–10585 (1990)CrossRef
Metadata
Title
Recent Development of Multifunctional Nanocomposites Based on Bacterial Nanocellulose
Authors
Sisi Cao
Qisheng Jiang
Srikanth Singamaneni
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-14043-3_3

Premium Partners