Skip to main content
Top

2011 | OriginalPaper | Chapter

4. Recent Past about WPC Work

Authors : Jin Kuk Kim, Kaushik Pal

Published in: Recent Advances in the Processing of Wood-Plastic Composites

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, significant efforts have been made to manufacture thermoplastic composites using such natural fibers as wood sawdust, wheat straw, nut shell fiber, and jute fiber [13]. The rationable behind these efforts is that the use of natural fibers offers several benefits, including low cost, high specific properties, renewable nature, and biodegradability. Wood fibers are the most favored form of fibers in commercial usage. Because of their high specific stiffness and strength, Wood-fiber/Plastic Composites (WPCs) are a cost-effective alternative to many plastic composites or metals [4]. Wood fiber is a non-abrasive substance, which means that relatively large concentrations of this material can be incorporated into plastics without causing serious machine wear during blending and processing. In spite of their higher price, WPCs are becoming increasingly acceptable to consumers as a replacement for natural wood due to such advantages as durability, color permanence, resistance to degradation and fungal attacks, and reduced maintenance. Furthermore, adding wood fibers to plastic products makes good use of waste wood. WPCs are mainly employed in building products, such as decking, fencing, rails, door and window profiles, and decorative trims. Moreover, these composites are also gaining acceptance in automotive and other industrial applications [5].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arbelaiz, A., Fernández, B., Cantero, G., Llano-Ponte, R., Valea, A., Mondragon, I.: Mechanical properties of flax fibre/polypropylene composites: influence of fibre/matrix modification and glass fibre hybridization. Compos. Part A 36, 1637–1644 (2005)CrossRef Arbelaiz, A., Fernández, B., Cantero, G., Llano-Ponte, R., Valea, A., Mondragon, I.: Mechanical properties of flax fibre/polypropylene composites: influence of fibre/matrix modification and glass fibre hybridization. Compos. Part A 36, 1637–1644 (2005)CrossRef
2.
go back to reference Cantero, G., Arbelaiz, A., Llano-Ponte, R., Mondragon, I.: Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos. Sci. Technol. 63, 1247–1254 (2003)CrossRef Cantero, G., Arbelaiz, A., Llano-Ponte, R., Mondragon, I.: Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos. Sci. Technol. 63, 1247–1254 (2003)CrossRef
3.
go back to reference Raj, R.G., Kokta, B.V., Groleau, G., Daneault, C.: Use of wood fiber as a filler in polyethylene: studies on mechanical properties. Plast. Rubber Process. Appl. 11(4), 215 (1989) Raj, R.G., Kokta, B.V., Groleau, G., Daneault, C.: Use of wood fiber as a filler in polyethylene: studies on mechanical properties. Plast. Rubber Process. Appl. 11(4), 215 (1989)
4.
go back to reference Bledzki, A.K., Faruk, O.V., Sperber, E.: Cars from bio-fibres. Macromol. Mater. Eng. 291, 449–457 (2006)CrossRef Bledzki, A.K., Faruk, O.V., Sperber, E.: Cars from bio-fibres. Macromol. Mater. Eng. 291, 449–457 (2006)CrossRef
5.
go back to reference Clemons, C.: Wood-plastic composites in the United States: the interfacing of two industries. For. Prod. J. 52(6), 10–18 (2002)MathSciNet Clemons, C.: Wood-plastic composites in the United States: the interfacing of two industries. For. Prod. J. 52(6), 10–18 (2002)MathSciNet
6.
go back to reference Kokta, B.V., Maldas, D., Daneault, C., Beland, P.: Composites of polyvinyl chloride-wood fibers: I. Effect of isocyanate as a bonding agent. Polym. Plast. Technol. Eng. 29(1/2), 87–118 (1990) Kokta, B.V., Maldas, D., Daneault, C., Beland, P.: Composites of polyvinyl chloride-wood fibers: I. Effect of isocyanate as a bonding agent. Polym. Plast. Technol. Eng. 29(1/2), 87–118 (1990)
7.
go back to reference Pickering, K.L., Abdalla, A., Ji, C., McDonald, A.G., Franich, R.A.: The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Part A. Appl. Sci. Manuf. 34(10), 915–926 (2003) Pickering, K.L., Abdalla, A., Ji, C., McDonald, A.G., Franich, R.A.: The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Part A. Appl. Sci. Manuf. 34(10), 915–926 (2003)
8.
go back to reference Kazayawoko, M., Balatinecz, J.J., Matuana, L.M.: Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. J. Mater. Sci. 34, 6189–6199 (1999)CrossRef Kazayawoko, M., Balatinecz, J.J., Matuana, L.M.: Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. J. Mater. Sci. 34, 6189–6199 (1999)CrossRef
9.
go back to reference Coutinho, F.M.B., Costa, T.H.S., Carvalho, D.L.: Polypropylene-wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65, 1227–1235 (1997)CrossRef Coutinho, F.M.B., Costa, T.H.S., Carvalho, D.L.: Polypropylene-wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65, 1227–1235 (1997)CrossRef
10.
go back to reference Raj, R.G., Kokta, B.V., Maldas, D., Daneault, C.: Use of wood fibers in thermoplastics. VII: The effect of coupling agents in polyethylene-wood fibers composites. J. Appl. Polym. Sci. 37, 1089–1103 (1989)CrossRef Raj, R.G., Kokta, B.V., Maldas, D., Daneault, C.: Use of wood fibers in thermoplastics. VII: The effect of coupling agents in polyethylene-wood fibers composites. J. Appl. Polym. Sci. 37, 1089–1103 (1989)CrossRef
11.
go back to reference Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18(4), 351–363 (1999)CrossRef Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18(4), 351–363 (1999)CrossRef
12.
go back to reference Pape, P.G., Romenesko, D.J.: The role of silicone powders in reducing the heat release rate and evolution of smoke in flame retardant thermoplastics. J. Vinyl Addit. Technol. 3, 225–232 (1997)CrossRef Pape, P.G., Romenesko, D.J.: The role of silicone powders in reducing the heat release rate and evolution of smoke in flame retardant thermoplastics. J. Vinyl Addit. Technol. 3, 225–232 (1997)CrossRef
13.
go back to reference Le Bras, M., Wilkie, C.A., Bourbigot, S., Duquesne S., Jama, C.: Fire Retardancy of Polymers: New Applications of Mineral Fillers, chap. 2. The Royal Society of Chemistry Publisher, UK (2005) Le Bras, M., Wilkie, C.A., Bourbigot, S., Duquesne S., Jama, C.: Fire Retardancy of Polymers: New Applications of Mineral Fillers, chap. 2. The Royal Society of Chemistry Publisher, UK (2005)
14.
go back to reference Wei, P., Hao, J., Du, J., Han, Z., Wang, J.: An investigation on synergism of an intumescent flame retardant based on silica and alumina. J. Fire Sci. 21, 17–28 (2003)CrossRef Wei, P., Hao, J., Du, J., Han, Z., Wang, J.: An investigation on synergism of an intumescent flame retardant based on silica and alumina. J. Fire Sci. 21, 17–28 (2003)CrossRef
15.
go back to reference Gilman, J.W., Kashiwagi, T., Harris, R.H., Jr., Lomakin, S., Lichetenhan, J.D., Jones, P., Bolf, A.: In: Al-Malaika, S., Wilkie, C., Golovoy, C.A. (eds.) Chemistry and Technology of Polymer Additives. Blackwell Science, London (1999) Gilman, J.W., Kashiwagi, T., Harris, R.H., Jr., Lomakin, S., Lichetenhan, J.D., Jones, P., Bolf, A.: In: Al-Malaika, S., Wilkie, C., Golovoy, C.A. (eds.) Chemistry and Technology of Polymer Additives. Blackwell Science, London (1999)
16.
go back to reference Kashiwagi, T., Gilman, J.W., Butler, K.M., Harris, R.H., Shields, J.R., Asano, A.: Flame retardant mechanism of silica gel/silica. Fire Mater. 24, 277–289 (2000)CrossRef Kashiwagi, T., Gilman, J.W., Butler, K.M., Harris, R.H., Shields, J.R., Asano, A.: Flame retardant mechanism of silica gel/silica. Fire Mater. 24, 277–289 (2000)CrossRef
17.
go back to reference Sain, M., Park, S.H., Suhara, F., Law, S.: Flame retardant and mechanical properties of natural fiber-PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 83(2), 363–367 (2004)CrossRef Sain, M., Park, S.H., Suhara, F., Law, S.: Flame retardant and mechanical properties of natural fiber-PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 83(2), 363–367 (2004)CrossRef
18.
go back to reference Zhao, Y., Wang, K., Zhu, F., Xue, P., Jia, M.: Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym. Degrad. Stab. 91(2), 2874–2883 (2006)CrossRef Zhao, Y., Wang, K., Zhu, F., Xue, P., Jia, M.: Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym. Degrad. Stab. 91(2), 2874–2883 (2006)CrossRef
19.
go back to reference Li, B., He, J.: Investigation the mechanical property, flame retardancy and thermal degradation of LLDPE-wood fiber composites. Polym. Degrad. Stab. 83, 241–246 (2004)CrossRef Li, B., He, J.: Investigation the mechanical property, flame retardancy and thermal degradation of LLDPE-wood fiber composites. Polym. Degrad. Stab. 83, 241–246 (2004)CrossRef
20.
go back to reference Klempner, D., Frisch, K.C.: Handbook of Polymeric Foams and Foam Technology. Oxford University, New York (1991) Klempner, D., Frisch, K.C.: Handbook of Polymeric Foams and Foam Technology. Oxford University, New York (1991)
21.
go back to reference Landrock, A.H.: Handbook of Plastic Foams: Types, Properties, Manufacture and Applications. Noyes, NJ (1991) Landrock, A.H.: Handbook of Plastic Foams: Types, Properties, Manufacture and Applications. Noyes, NJ (1991)
22.
go back to reference Lee, S.T.: Foam Extrusion: Principles and Practice. CRC Press, London (2000)CrossRef Lee, S.T.: Foam Extrusion: Principles and Practice. CRC Press, London (2000)CrossRef
23.
go back to reference Baker, R.W.: Membrane Technology and Application. McGraw Hill, New York (2000) Baker, R.W.: Membrane Technology and Application. McGraw Hill, New York (2000)
24.
go back to reference Hedrick, J.L., Carter, K.R., Labadie, J.W.: Nanoporous polyimides. Adv. Polym. Sci. 141, 1–8 (1999)CrossRef Hedrick, J.L., Carter, K.R., Labadie, J.W.: Nanoporous polyimides. Adv. Polym. Sci. 141, 1–8 (1999)CrossRef
25.
go back to reference Luebke, G., Holzberg, T.: New developments of chemical foaming agents for wood plastic composites. In: Fourth International Wood and Natural Fibre Composites Symposium, Kassel, Germany, p. 15-1 (2002) Luebke, G., Holzberg, T.: New developments of chemical foaming agents for wood plastic composites. In: Fourth International Wood and Natural Fibre Composites Symposium, Kassel, Germany, p. 15-1 (2002)
26.
go back to reference Frich, K.C., Saunders, J. H.: Plastic Foams, Part I. Marcel Dekker Inc., New York (1972) Frich, K.C., Saunders, J. H.: Plastic Foams, Part I. Marcel Dekker Inc., New York (1972)
27.
go back to reference Gorski, R.A., Ramsey, R.B., Dishart, K.T.: Physical properties of blowing agent polymer systems-I: solubility of fluorocarbon blowing agents in thermoplastic resins. J. Cell. Plast. 22, 21–52 (1986)CrossRef Gorski, R.A., Ramsey, R.B., Dishart, K.T.: Physical properties of blowing agent polymer systems-I: solubility of fluorocarbon blowing agents in thermoplastic resins. J. Cell. Plast. 22, 21–52 (1986)CrossRef
28.
go back to reference Dwyer, F.J., Zwolinski, L.M., Thrun, K.M.: Extruding thermoplastic foams with a non-CFC blowing agent. Plast. Eng. 5, 29–32 (1990) Dwyer, F.J., Zwolinski, L.M., Thrun, K.M.: Extruding thermoplastic foams with a non-CFC blowing agent. Plast. Eng. 5, 29–32 (1990)
29.
go back to reference Mccallum, T.J.: Properties and foaming behaviour of thermoplastic olefin blends based on linear and branched polypropylene. PhD Dissertation, Queen’s University, p. 21 (2007) Mccallum, T.J.: Properties and foaming behaviour of thermoplastic olefin blends based on linear and branched polypropylene. PhD Dissertation, Queen’s University, p. 21 (2007)
30.
go back to reference Shutov, F.A.: Integral/structureal polymer foams. Springer, New York (1986) Shutov, F.A.: Integral/structureal polymer foams. Springer, New York (1986)
31.
32.
go back to reference Martini, J., Waldrnan, F.A., Suh, N.P.: The production and analysis of microcellular thermoplastic foams. SPE ANTEC Technical Papers, vol. 28, p. 674 (1982) Martini, J., Waldrnan, F.A., Suh, N.P.: The production and analysis of microcellular thermoplastic foams. SPE ANTEC Technical Papers, vol. 28, p. 674 (1982)
33.
go back to reference Doroudiani, S., Park, C.B., Kortschot, M.T.: Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends. Polym. Eng. Sci. 38(7), 1205–1215 (1998)CrossRef Doroudiani, S., Park, C.B., Kortschot, M.T.: Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends. Polym. Eng. Sci. 38(7), 1205–1215 (1998)CrossRef
34.
go back to reference Kumar, V., Weller, J.E.: A process to produce microcellular PVC. Int. Polym. Process. VIII(1),73–80 (1993) Kumar, V., Weller, J.E.: A process to produce microcellular PVC. Int. Polym. Process. VIII(1),73–80 (1993)
35.
go back to reference Kumar, V., Weller, J.: Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. J. Eng. Ind. 116, 413–420 (1994)CrossRef Kumar, V., Weller, J.: Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. J. Eng. Ind. 116, 413–420 (1994)CrossRef
36.
go back to reference Kumar, V., Schirmer, H.G.: Semi-continuous production of solid state polymeric foams. US Patent 5,684,055 (1997) Kumar, V., Schirmer, H.G.: Semi-continuous production of solid state polymeric foams. US Patent 5,684,055 (1997)
37.
go back to reference Kumar, V., Schirmer, H.G.: Semi-continuous production of solid-state PET foams. SPE-ANTEC, vol. 2, pp. 2189–2192 (1995) Kumar, V., Schirmer, H.G.: Semi-continuous production of solid-state PET foams. SPE-ANTEC, vol. 2, pp. 2189–2192 (1995)
38.
go back to reference Rabinovitch, E.B., Isner, J.D., Sidor, J.A., Wiedl, D.J.: Effect of extrusion conditions on rigid PVC foam. J. Vinyl Addit. Technol. 3, 210–213 (1997)CrossRef Rabinovitch, E.B., Isner, J.D., Sidor, J.A., Wiedl, D.J.: Effect of extrusion conditions on rigid PVC foam. J. Vinyl Addit. Technol. 3, 210–213 (1997)CrossRef
39.
go back to reference Mengeloglu, F., Matuana, L.M.: Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J. Vinyl Addit. Technol. 7, 142–148 (2001)CrossRef Mengeloglu, F., Matuana, L.M.: Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J. Vinyl Addit. Technol. 7, 142–148 (2001)CrossRef
40.
go back to reference Mengeloglu, F., Matuana, L.M.: Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites. J. Vinyl Addit. Technol. 9, 26–31 (2003)CrossRef Mengeloglu, F., Matuana, L.M.: Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites. J. Vinyl Addit. Technol. 9, 26–31 (2003)CrossRef
41.
go back to reference Lee, S.T., Kareko, L., Jun, J.: Study of thermoplastic PLA foam extrusion. J. Cell. Plast. 44, 293–305 (2008)CrossRef Lee, S.T., Kareko, L., Jun, J.: Study of thermoplastic PLA foam extrusion. J. Cell. Plast. 44, 293–305 (2008)CrossRef
42.
go back to reference Jeong, B., Xanthos, M., Seo, Y.: Extrusion foaming behavior of PBT resins. J. Cell. Plast. 42, 165–176 (2006)CrossRef Jeong, B., Xanthos, M., Seo, Y.: Extrusion foaming behavior of PBT resins. J. Cell. Plast. 42, 165–176 (2006)CrossRef
43.
go back to reference Zhang, S., Rodrigue, D.: Preparation and morphology of polypropylene/wood flour composite foams via extrusion. Polym. Compos. 26, 731–738 (2005)CrossRefMATH Zhang, S., Rodrigue, D.: Preparation and morphology of polypropylene/wood flour composite foams via extrusion. Polym. Compos. 26, 731–738 (2005)CrossRefMATH
44.
go back to reference Li, Q., Matuana, L.M.: Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. J. Appl. Polym. Sci. 88, 3139–3150 (2002)CrossRef Li, Q., Matuana, L.M.: Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. J. Appl. Polym. Sci. 88, 3139–3150 (2002)CrossRef
45.
go back to reference Han, X., Koelling, K.W., Tomasko, D.L., Lee, L.J.: Continuous microcellular polystyrene foam extrusion with supercritical CO2. Polym. Eng. Sci. 42(11), 2094–2106 (2004)CrossRef Han, X., Koelling, K.W., Tomasko, D.L., Lee, L.J.: Continuous microcellular polystyrene foam extrusion with supercritical CO2. Polym. Eng. Sci. 42(11), 2094–2106 (2004)CrossRef
46.
go back to reference Han, X., Zeng, C., Lee, L.J., Koelling, K.W., Tomasko, D.L.: Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym. Eng. Sci. 43(6), 1261–1275 (2004)CrossRef Han, X., Zeng, C., Lee, L.J., Koelling, K.W., Tomasko, D.L.: Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym. Eng. Sci. 43(6), 1261–1275 (2004)CrossRef
47.
go back to reference Lee, M., Tzoganakis, C., Park, C.B.: Extrusion of PE/PS blends with supercritical carbon dioxide. Polym. Eng. Sci. 38(7), 1112–1120 (2004) Lee, M., Tzoganakis, C., Park, C.B.: Extrusion of PE/PS blends with supercritical carbon dioxide. Polym. Eng. Sci. 38(7), 1112–1120 (2004)
48.
go back to reference Siripurapu, S.S., Gay, Y.J., Royer, J.R., Desimone, J.M., Spontak, R.J.: Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer 43(20), 5511–5520 (2002)CrossRef Siripurapu, S.S., Gay, Y.J., Royer, J.R., Desimone, J.M., Spontak, R.J.: Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer 43(20), 5511–5520 (2002)CrossRef
49.
go back to reference Park, C.B., Suh, N.P.: Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polym. Eng. Sci. 36(1), 34–48 (1996)CrossRefMathSciNet Park, C.B., Suh, N.P.: Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polym. Eng. Sci. 36(1), 34–48 (1996)CrossRefMathSciNet
50.
go back to reference Park, C.B., Baldwin, D.F., Suh, N.P.: Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 35(5), 432–440 (1995)CrossRef Park, C.B., Baldwin, D.F., Suh, N.P.: Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 35(5), 432–440 (1995)CrossRef
51.
go back to reference Park, C.B., Suh, N.P.: Rapid polymer/gas solution formation for continuous production of microcellular plastics. J. Manuf. Sci. Eng. 118, 639–645 (1996)CrossRef Park, C.B., Suh, N.P.: Rapid polymer/gas solution formation for continuous production of microcellular plastics. J. Manuf. Sci. Eng. 118, 639–645 (1996)CrossRef
52.
go back to reference Guo, M.C., Heuzey, M.C., Carreau, P.J.: Cell structure and dynamic properties of injection molded polypropylene foams. Polym. Eng. Sci. 47, 1070–1081 (2007)CrossRef Guo, M.C., Heuzey, M.C., Carreau, P.J.: Cell structure and dynamic properties of injection molded polypropylene foams. Polym. Eng. Sci. 47, 1070–1081 (2007)CrossRef
53.
go back to reference Martini-Vvedensky, J.E., Suh, N.P., Waldman, F.A.: Microcellular closed cell foams and their method of manufacture. US Patent 4,473,665 (1984) Martini-Vvedensky, J.E., Suh, N.P., Waldman, F.A.: Microcellular closed cell foams and their method of manufacture. US Patent 4,473,665 (1984)
55.
go back to reference Xu, J.: Reciprocating-screw injection molding machine for microcellular foam. SPE-ANTEC, pp. 449–453 (2001) Xu, J.: Reciprocating-screw injection molding machine for microcellular foam. SPE-ANTEC, pp. 449–453 (2001)
56.
go back to reference Jacobsen, K., Pierick, D.: Microcellular foam molding: advantages and application examples. SPE-ANTEC, pp. 1929–1933 (2000) Jacobsen, K., Pierick, D.: Microcellular foam molding: advantages and application examples. SPE-ANTEC, pp. 1929–1933 (2000)
57.
go back to reference Moore, S.: Foam molding resurgence: sparks competition among processes. Mod. Plast. 11, 23–25 (2001) Moore, S.: Foam molding resurgence: sparks competition among processes. Mod. Plast. 11, 23–25 (2001)
58.
go back to reference Kishbaugh, L.A., Levesque, K.J., Guillemette, A.H., Chen, L., Xu, J., Okamoto, K.T.: Fiber-filled molded foam articles, molding, and process aids (USA). WO:2002026482 (2002) Kishbaugh, L.A., Levesque, K.J., Guillemette, A.H., Chen, L., Xu, J., Okamoto, K.T.: Fiber-filled molded foam articles, molding, and process aids (USA). WO:2002026482 (2002)
59.
go back to reference Wong, S., Lee, J.W.S., Naguib, H.E., Park, C.B.: Effect of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) cellular foams. Macromol. Mater. Eng. 293, 605–613CrossRef Wong, S., Lee, J.W.S., Naguib, H.E., Park, C.B.: Effect of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) cellular foams. Macromol. Mater. Eng. 293, 605–613CrossRef
60.
go back to reference Crank, J., Park, G.S.: Diffusion in polymers. Academic Press Inc., New York (1968) Crank, J., Park, G.S.: Diffusion in polymers. Academic Press Inc., New York (1968)
61.
go back to reference Van Krevelen, D.W.: Properties of polymers. Elsevier, New York (1990) Van Krevelen, D.W.: Properties of polymers. Elsevier, New York (1990)
62.
go back to reference Wissinger, R.G., Paulaitis, M.E.: Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J. Polym. Sci. Part B. Polym. Phys. 25, 2497–2510 (1987)CrossRef Wissinger, R.G., Paulaitis, M.E.: Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J. Polym. Sci. Part B. Polym. Phys. 25, 2497–2510 (1987)CrossRef
63.
go back to reference Wissinger, R.G., Paulaitis, M.E.: Molecular thermodynamic model for sorption and swelling in glassy polymer-CO2 system at elevated pressures. Ind. Eng. Chem. Res. 2530, 842–851 (1991)CrossRef Wissinger, R.G., Paulaitis, M.E.: Molecular thermodynamic model for sorption and swelling in glassy polymer-CO2 system at elevated pressures. Ind. Eng. Chem. Res. 2530, 842–851 (1991)CrossRef
64.
go back to reference Sato, Y., Fujiwara, K., Takikawa, T., Sumarno, Takishima, S., Masuoka, H.: Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib. 162, 261–276 (1999) Sato, Y., Fujiwara, K., Takikawa, T., Sumarno, Takishima, S., Masuoka, H.: Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib. 162, 261–276 (1999)
65.
go back to reference Sato, Y., Takikawa, T., Takishima, S., Masuoka, H.: Solubility and diffusion coefficient of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 19, 187–198 (2001)CrossRef Sato, Y., Takikawa, T., Takishima, S., Masuoka, H.: Solubility and diffusion coefficient of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 19, 187–198 (2001)CrossRef
66.
go back to reference Zhang, Q., Xanthos, M., Dey, S.K.: In-line measurement of gas solubility in polystyrene and polyethylene terephthalate melts during foam extrusion. MD (Am. Soc. Mech. Eng.), vol. 82 (Porous, Cellular and Microcellular Materials), pp. 75–83 (1998) Zhang, Q., Xanthos, M., Dey, S.K.: In-line measurement of gas solubility in polystyrene and polyethylene terephthalate melts during foam extrusion. MD (Am. Soc. Mech. Eng.), vol. 82 (Porous, Cellular and Microcellular Materials), pp. 75–83 (1998)
67.
go back to reference Park, C.B., Suh, N.P.: Rapid polymer/gas solution formation for continuous processing of microcellular plastics ASME trans. J. Manuf. Sci. Eng. 118, 639–645 (1996) Park, C.B., Suh, N.P.: Rapid polymer/gas solution formation for continuous processing of microcellular plastics ASME trans. J. Manuf. Sci. Eng. 118, 639–645 (1996)
68.
go back to reference Colton, J.S., Suh, N.P.: Nucleation of microcellular foam: theory and practice. Polym. Eng. Sci. 27, 500–503 (1987)CrossRef Colton, J.S., Suh, N.P.: Nucleation of microcellular foam: theory and practice. Polym. Eng. Sci. 27, 500–503 (1987)CrossRef
69.
go back to reference Colton, J.S., Suh, N.P.: Nucleation of microcellular thermoplastic foam with additives: part 1. Theoretical considerations. Polym. Eng. Sci. 27(7), 485–492 (1987) Colton, J.S., Suh, N.P.: Nucleation of microcellular thermoplastic foam with additives: part 1. Theoretical considerations. Polym. Eng. Sci. 27(7), 485–492 (1987)
70.
go back to reference Colton, J.S., Suh, N.P.: Nucleation of microcellular thermoplastic foam with additives: part 2. Experimental results and discussion. Polym. Eng. Sci. 27(7), 493–499 (1987)CrossRef Colton, J.S., Suh, N.P.: Nucleation of microcellular thermoplastic foam with additives: part 2. Experimental results and discussion. Polym. Eng. Sci. 27(7), 493–499 (1987)CrossRef
71.
go back to reference Lee, J.H., Flumerfelt, R.W.: A refined approach to bubble nucleation and polymer foaming process: dissolved gas and cluster size effects. J. Coll. Interface Sci. 184, 335–348 (1996)CrossRef Lee, J.H., Flumerfelt, R.W.: A refined approach to bubble nucleation and polymer foaming process: dissolved gas and cluster size effects. J. Coll. Interface Sci. 184, 335–348 (1996)CrossRef
72.
go back to reference Punnathanam, S., Corti, D.S.: Homogeneous nucleation in stretched fluids: cavity formation in the superheated Lennard-Jones liquid. Ind. Eng. Chem. Res. 41, 1113–1121 (2002)CrossRef Punnathanam, S., Corti, D.S.: Homogeneous nucleation in stretched fluids: cavity formation in the superheated Lennard-Jones liquid. Ind. Eng. Chem. Res. 41, 1113–1121 (2002)CrossRef
73.
go back to reference Han, J.H., Han, C.D.: A study on bubble nucleation in polymeric liquid. I. bubble nucleation in concentrated polymer solutions. J. Polym. Sci. Part B. Polym. Phys. 28, 711–741 (1990)CrossRef Han, J.H., Han, C.D.: A study on bubble nucleation in polymeric liquid. I. bubble nucleation in concentrated polymer solutions. J. Polym. Sci. Part B. Polym. Phys. 28, 711–741 (1990)CrossRef
74.
go back to reference Han, J.H., Han, C.D.: A study on bubble nucleation in polymeric liquid. II. Theoretical consideration. J. Polym. Sci. Part B. Polym. Phys. 28, 743–761 (1990)CrossRef Han, J.H., Han, C.D.: A study on bubble nucleation in polymeric liquid. II. Theoretical consideration. J. Polym. Sci. Part B. Polym. Phys. 28, 743–761 (1990)CrossRef
75.
go back to reference Leung, S.N., Park, C.B, Li, H.: Numerical simulation of polymeric foaming processes using modified nucleation theory. Plast. Rubber Compos. 35, 93 (2006)CrossRef Leung, S.N., Park, C.B, Li, H.: Numerical simulation of polymeric foaming processes using modified nucleation theory. Plast. Rubber Compos. 35, 93 (2006)CrossRef
76.
go back to reference Colton, J.S., Suh, N.P.: The nucleation of microcellular thermoplastic foam with additives. Part II: experimental results and discussion. Polym. Eng. Sci. 27, 493–499 (1987)CrossRef Colton, J.S., Suh, N.P.: The nucleation of microcellular thermoplastic foam with additives. Part II: experimental results and discussion. Polym. Eng. Sci. 27, 493–499 (1987)CrossRef
77.
go back to reference Behravesh, A.H., Park, C.B., Cheung, L.K., Venter, R.D.: Extrusion of polypropylene foams with hydrocerol and isopentane. J. Vinyl Addit. Technol. 2(4), 349–357 (1996)CrossRef Behravesh, A.H., Park, C.B., Cheung, L.K., Venter, R.D.: Extrusion of polypropylene foams with hydrocerol and isopentane. J. Vinyl Addit. Technol. 2(4), 349–357 (1996)CrossRef
78.
go back to reference Lee, C., Sheth, S.H., Kim, R.: Gas absorption with filled polymer systems. Polym. Eng. Sci. 41(6), 990–997 (2001)CrossRef Lee, C., Sheth, S.H., Kim, R.: Gas absorption with filled polymer systems. Polym. Eng. Sci. 41(6), 990–997 (2001)CrossRef
79.
go back to reference Ramesh, N.S., Rasmussen, D.H., Campbell, G.A.: The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass-transition particles. 1. Mathematical-modeling and numerical simulation. Polym. Eng. Sci. 34, 1685–1697 (1994) Ramesh, N.S., Rasmussen, D.H., Campbell, G.A.: The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass-transition particles. 1. Mathematical-modeling and numerical simulation. Polym. Eng. Sci. 34, 1685–1697 (1994)
80.
go back to reference Lee, S.T., Ramesh, N.S.: In: Kumar, V., Seeler, K.A. (eds.) Cellular and Microcellular Materials, 76, pp. 71–80. ASME, New York (1996) Lee, S.T., Ramesh, N.S.: In: Kumar, V., Seeler, K.A. (eds.) Cellular and Microcellular Materials, 76, pp. 71–80. ASME, New York (1996)
81.
go back to reference Park, C.B., Behravesh, A.H., Venter, R.D.: Chapter 8: a strategy for suppression of cell coalescence in the extrusion of microcellular HIPS foams. In: Khemani, K. (ed.) Foam book: recent advances in polymeric foam science and technology. ACS, Washington, pp. 115–129 (1997)CrossRef Park, C.B., Behravesh, A.H., Venter, R.D.: Chapter 8: a strategy for suppression of cell coalescence in the extrusion of microcellular HIPS foams. In: Khemani, K. (ed.) Foam book: recent advances in polymeric foam science and technology. ACS, Washington, pp. 115–129 (1997)CrossRef
82.
go back to reference Baldwin, D.F., Park, C.B., Suh, N.P.: A microcellular processing study of poly(ethylene terephtalate) in the amorphous and semicrystalline states: part II. Cell growth and process design. Polym. Eng. Sci. 36, 1446–1453 (1996)CrossRef Baldwin, D.F., Park, C.B., Suh, N.P.: A microcellular processing study of poly(ethylene terephtalate) in the amorphous and semicrystalline states: part II. Cell growth and process design. Polym. Eng. Sci. 36, 1446–1453 (1996)CrossRef
83.
go back to reference Barlow, C., Kumar, V., Flinn, B., Bordia, R.K., Weller, J.: Impact strength of high density solid-state microcellular polycarbonate foams. J. Eng. Mater. Technol. 123(2), 229–233 (2001)CrossRef Barlow, C., Kumar, V., Flinn, B., Bordia, R.K., Weller, J.: Impact strength of high density solid-state microcellular polycarbonate foams. J. Eng. Mater. Technol. 123(2), 229–233 (2001)CrossRef
84.
go back to reference Collias, D.I., Baird, D.G., Borggreve, R.J.M.: Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18), 3978–3983 (1994)CrossRef Collias, D.I., Baird, D.G., Borggreve, R.J.M.: Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18), 3978–3983 (1994)CrossRef
85.
go back to reference Collias, D.I., Baird, D.G.: Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrixes and microcellular foams. Polym. Eng. Sci. 35(14), 1167–1177 (1995)CrossRef Collias, D.I., Baird, D.G.: Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrixes and microcellular foams. Polym. Eng. Sci. 35(14), 1167–1177 (1995)CrossRef
86.
go back to reference Matuana, L.M., Park, C.B., Balatinecz, J.J.: Structures and mechanical properties of microcellular foamed polyvinyl chloride. Cell. Polym. 17(1), 1–16 (1998) Matuana, L.M., Park, C.B., Balatinecz, J.J.: Structures and mechanical properties of microcellular foamed polyvinyl chloride. Cell. Polym. 17(1), 1–16 (1998)
87.
go back to reference Kumar, V.: Microcellular plastics: does microcellular structure always lead to an improvement in impact properties? 60th SPE-ANTEC, vol. 2, pp. 1892–1896 (2002) Kumar, V.: Microcellular plastics: does microcellular structure always lead to an improvement in impact properties? 60th SPE-ANTEC, vol. 2, pp. 1892–1896 (2002)
88.
go back to reference Juntunen, R.P., Kumar, V., Weller, J.E., Bezubic, W.P.: Impact strength of high density microcellular poly(vinyl chloride) foams. J. Vinyl Addit. Technol. 6(2), 93–99 (2000)CrossRef Juntunen, R.P., Kumar, V., Weller, J.E., Bezubic, W.P.: Impact strength of high density microcellular poly(vinyl chloride) foams. J. Vinyl Addit. Technol. 6(2), 93–99 (2000)CrossRef
89.
go back to reference Seeler, K.A., Kumar, V.: Tension-tension fatigue of microcellular polycarbonate: initial results. J. Reinf. Plast. Compos. 12(3), 359–376 (1993)CrossRef Seeler, K.A., Kumar, V.: Tension-tension fatigue of microcellular polycarbonate: initial results. J. Reinf. Plast. Compos. 12(3), 359–376 (1993)CrossRef
90.
go back to reference Kumar, V., VanderWel, M., Weller, J., Seeler, K.A.: Experimental characterization of the tensile behavior of microcellular polycarbonate foams. J. Eng. Mater. Technol. 116(4), 439–445 (1994)CrossRef Kumar, V., VanderWel, M., Weller, J., Seeler, K.A.: Experimental characterization of the tensile behavior of microcellular polycarbonate foams. J. Eng. Mater. Technol. 116(4), 439–445 (1994)CrossRef
91.
go back to reference Arora, K.A, Lesser, A.J, McCarthy, T.J.: Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polym. Eng. Sci. 38(12), 2055–2062 (1998)CrossRef Arora, K.A, Lesser, A.J, McCarthy, T.J.: Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polym. Eng. Sci. 38(12), 2055–2062 (1998)CrossRef
92.
go back to reference Legge, N.R., Holden, G., Schroeder, H.E.: Thermoplastic elastomer: a comprehensive review. Hanser Publishers, Munich (1987) Legge, N.R., Holden, G., Schroeder, H.E.: Thermoplastic elastomer: a comprehensive review. Hanser Publishers, Munich (1987)
93.
go back to reference Walker, B.M., Rader, C.P.: Handbook of Thermoplastic Elastomers. Van Nostrand Reinhold Co., New York (1998) Walker, B.M., Rader, C.P.: Handbook of Thermoplastic Elastomers. Van Nostrand Reinhold Co., New York (1998)
94.
go back to reference Abdou-Sabet, S., Patel, R.P.: Morphology of elastomeric alloys. Rubber Chem. Technol. 64, 769–779 (1991) Abdou-Sabet, S., Patel, R.P.: Morphology of elastomeric alloys. Rubber Chem. Technol. 64, 769–779 (1991)
95.
go back to reference Gessler, A.M., Haslett, W.H.: Process for preparing a vulcanized blend of crystalline polypropylene and chlorinated butyl rubber. US Patent 3,037,954 (1962) Gessler, A.M., Haslett, W.H.: Process for preparing a vulcanized blend of crystalline polypropylene and chlorinated butyl rubber. US Patent 3,037,954 (1962)
96.
go back to reference Gottler, W.K., Richwine, J.R., Wille, F.J.: The rheology and processing of olefin-based thermoplastic vulcanizates. Rubber Chem. Technol. 55, 1448–1463 (1982) Gottler, W.K., Richwine, J.R., Wille, F.J.: The rheology and processing of olefin-based thermoplastic vulcanizates. Rubber Chem. Technol. 55, 1448–1463 (1982)
97.
go back to reference Dutta, A., Cakmak, M.: Influence of composition and processing history on the cellular morphology of the foamed olefinic thermoplastic elastomers. Rubber Chem. Technol. 65, 932–955 (1992) Dutta, A., Cakmak, M.: Influence of composition and processing history on the cellular morphology of the foamed olefinic thermoplastic elastomers. Rubber Chem. Technol. 65, 932–955 (1992)
98.
go back to reference Brzoskowski, R., Wang, Y., La Tulippe, C., Dion, B., Cai, H., Sadeghi, H.: Extrusion of low density chemically foamed thermoplastic vulcanizates. SPE-ANTEC (Annual Technical Conference) Technical Papers, vol. 3, pp. 3204–3208 (1998) Brzoskowski, R., Wang, Y., La Tulippe, C., Dion, B., Cai, H., Sadeghi, H.: Extrusion of low density chemically foamed thermoplastic vulcanizates. SPE-ANTEC (Annual Technical Conference) Technical Papers, vol. 3, pp. 3204–3208 (1998)
99.
go back to reference Wang, Y., Cai, H., Freitas, L., Dion, B., Brzoskowski, R.: TPV foaming with water-releasing compound. Kunststoffe Plast. Eur. 88(12), 2170–2172 (1998) Wang, Y., Cai, H., Freitas, L., Dion, B., Brzoskowski, R.: TPV foaming with water-releasing compound. Kunststoffe Plast. Eur. 88(12), 2170–2172 (1998)
100.
go back to reference Sahnoune, A.: Foaming of thermoplastic elastomers with water. J. Cell. Plast. 37(2), 149–159 (2001)CrossRef Sahnoune, A.: Foaming of thermoplastic elastomers with water. J. Cell. Plast. 37(2), 149–159 (2001)CrossRef
101.
go back to reference Spitael, P., Macosko, C.W.: Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci. 44(11), 2090–2100 (2004)CrossRef Spitael, P., Macosko, C.W.: Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci. 44(11), 2090–2100 (2004)CrossRef
102.
go back to reference Kropp, D., Michaeli, W., Herrmann, T., Schroder, O.: Foam extrusion of thermoplastic elastomers using CO2 as blowing agent. J. Cell. Plast. 34(4), 304–311 (1998) Kropp, D., Michaeli, W., Herrmann, T., Schroder, O.: Foam extrusion of thermoplastic elastomers using CO2 as blowing agent. J. Cell. Plast. 34(4), 304–311 (1998)
103.
go back to reference Kim, S.G., Park, C.B., Kang, B.S., Sain, M.: Foamability of thermoplastic vulcanizates (TPVs) with carbon dioxide and nitrogen. Cell. Polym. 25, 19–33 (2006) Kim, S.G., Park, C.B., Kang, B.S., Sain, M.: Foamability of thermoplastic vulcanizates (TPVs) with carbon dioxide and nitrogen. Cell. Polym. 25, 19–33 (2006)
104.
go back to reference Kim, S.G., Park, C.B., Kang, B.S., Sain, M.: Foamability of thermoplastic vulcanizates blown with various physical blowing agents. J. Cell. Plast. 44, 53–67 (2008)CrossRef Kim, S.G., Park, C.B., Kang, B.S., Sain, M.: Foamability of thermoplastic vulcanizates blown with various physical blowing agents. J. Cell. Plast. 44, 53–67 (2008)CrossRef
Metadata
Title
Recent Past about WPC Work
Authors
Jin Kuk Kim
Kaushik Pal
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14877-4_4

Premium Partners