Skip to main content
Top

2016 | OriginalPaper | Chapter

Recent Trends in the Development of Gurson’s Model

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The original Gurson model for porous materials has undergone numerous modifications in order to improve its adequacy with experimental or numerical results. In this chapter various modifications of Gurson’s model and models created on the basis of the idea of Gurson’s model are presented. This chapter includes the following issues: (i) development of Gurson’s model, (ii) development of models for nucleation, growth and coalescence of voids and (iii) modification of Gurson’s model for failure prediction under shear deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371CrossRef McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371CrossRef
2.
go back to reference Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217CrossRef Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217CrossRef
3.
go back to reference Needleman A (1972) Void growth in an elastic-plastic medium. J Appl Mech Trans ASME 39:964–970 Needleman A (1972) Void growth in an elastic-plastic medium. J Appl Mech Trans ASME 39:964–970
4.
go back to reference Mandel J (1964) Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Proceedings of the 11th International Congress on Applied Mechanics. Springer, Munich, pp. 502–509 Mandel J (1964) Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Proceedings of the 11th International Congress on Applied Mechanics. Springer, Munich, pp. 502–509
5.
go back to reference Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95CrossRef Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95CrossRef
6.
go back to reference Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth—part I, Yield criteria and flow rules for porous ductile media. J Eng Mater Trans ASME 99:2–15CrossRef Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth—part I, Yield criteria and flow rules for porous ductile media. J Eng Mater Trans ASME 99:2–15CrossRef
7.
go back to reference Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853CrossRef Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853CrossRef
8.
go back to reference Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342MathSciNetCrossRef Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342MathSciNetCrossRef
9.
go back to reference Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352MathSciNetCrossRef Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352MathSciNetCrossRef
10.
go back to reference Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140MathSciNetCrossRef Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140MathSciNetCrossRef
11.
go back to reference Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407CrossRefMATH Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407CrossRefMATH
12.
go back to reference Tvergaard V (1982) Material failure by void coalescence in localized shear bands. Int J Solids Struct 18:659–672CrossRefMATH Tvergaard V (1982) Material failure by void coalescence in localized shear bands. Int J Solids Struct 18:659–672CrossRefMATH
13.
go back to reference Brown LM, Embury JD (1973) The initiation and growth of voids at second-phase particles. In: Proceedings of 3rd International Conference on Strength of Metals and Alloys. Institute of Metals, London, pp. 164–169 Brown LM, Embury JD (1973) The initiation and growth of voids at second-phase particles. In: Proceedings of 3rd International Conference on Strength of Metals and Alloys. Institute of Metals, London, pp. 164–169
14.
go back to reference Tvergaard V, Needleman A (1984) Analysis of cup-cone fracture in a round tensile bar. Acta Metall 32:157–169CrossRef Tvergaard V, Needleman A (1984) Analysis of cup-cone fracture in a round tensile bar. Acta Metall 32:157–169CrossRef
15.
go back to reference Andersson H (1977) Analysis of a model for void growth and coalescence ahead of a moving crack tip. J Mech Phys Solids 25:217–233CrossRefMATH Andersson H (1977) Analysis of a model for void growth and coalescence ahead of a moving crack tip. J Mech Phys Solids 25:217–233CrossRefMATH
16.
go back to reference Zhang ZL (2001) A complete Gurson model. In: Alibadi MH (ed) Nonlinear fracture and damage mechanics. WIT Press, Southampton, pp 223–248 Zhang ZL (2001) A complete Gurson model. In: Alibadi MH (ed) Nonlinear fracture and damage mechanics. WIT Press, Southampton, pp 223–248
17.
go back to reference Perrin G, Leblond J-B (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension—application to some problems in ductile fracture of metals. Int J Plast 6:677–699CrossRef Perrin G, Leblond J-B (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension—application to some problems in ductile fracture of metals. Int J Plast 6:677–699CrossRef
18.
go back to reference Gao X, Faleskog J, Shih CF (1998) Cell model for nonlinear fracture analysis—II, Fracture-process calibration and verification. Int J Fract 89:374–386CrossRef Gao X, Faleskog J, Shih CF (1998) Cell model for nonlinear fracture analysis—II, Fracture-process calibration and verification. Int J Fract 89:374–386CrossRef
19.
go back to reference Faleskog J, Gao X, Shih C (1998) Cell model for nonlinear fracture analysis—I, Micromechanics calibration. Int J Fract 89:355–373CrossRef Faleskog J, Gao X, Shih C (1998) Cell model for nonlinear fracture analysis—I, Micromechanics calibration. Int J Fract 89:355–373CrossRef
20.
go back to reference Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71:379–400CrossRef Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71:379–400CrossRef
21.
go back to reference Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T (2012) Computational homogenization of elasto-plastic porous metals. Int J Plast 29:102–119CrossRef Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T (2012) Computational homogenization of elasto-plastic porous metals. Int J Plast 29:102–119CrossRef
22.
go back to reference Mear ME, Hutchinson JW (1985) Influence of yield surface curvature on flow localization in dilatant plasticity. Mech Mater 4:395–407CrossRef Mear ME, Hutchinson JW (1985) Influence of yield surface curvature on flow localization in dilatant plasticity. Mech Mater 4:395–407CrossRef
23.
go back to reference Richmond O, Smelser RE (1985) Alcoa technical center memorandum, March 7. In: Hom CL, McMeeking RM (eds) Void growth in elastic–plastic materials. J Appl Mech 56:309–317 Richmond O, Smelser RE (1985) Alcoa technical center memorandum, March 7. In: Hom CL, McMeeking RM (eds) Void growth in elastic–plastic materials. J Appl Mech 56:309–317
24.
go back to reference Sun Y, Wang D (1989) A lower bound approach to the yield loci of porous materials. Acta Mech Sinica 5:399–406 Sun Y, Wang D (1989) A lower bound approach to the yield loci of porous materials. Acta Mech Sinica 5:399–406
25.
go back to reference Leblond J-B, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A Solid 14:499–527MathSciNet Leblond J-B, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A Solid 14:499–527MathSciNet
28.
go back to reference Gologanu M, Leblond J-B, Devaux J (1993) Approximate models for ductile metals containing nonspherical voids: case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754CrossRef Gologanu M, Leblond J-B, Devaux J (1993) Approximate models for ductile metals containing nonspherical voids: case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754CrossRef
29.
go back to reference Gologanu M, Leblond J-B, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids: case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Trans ASME 116:290–297CrossRef Gologanu M, Leblond J-B, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids: case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Trans ASME 116:290–297CrossRef
30.
go back to reference Ponte Castañeda P, Zaidman M (1994) Constitutive models for porous materials with evolving microstructure. J Mech Phys Solids 42:1459–1497MathSciNetCrossRef Ponte Castañeda P, Zaidman M (1994) Constitutive models for porous materials with evolving microstructure. J Mech Phys Solids 42:1459–1497MathSciNetCrossRef
31.
go back to reference Gologanu M, Leblond J-B, Perrin G, Devaux J (1995) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (ed) Continuum micromechanics. Springer, Heidelberg, pp 61–130 Gologanu M, Leblond J-B, Perrin G, Devaux J (1995) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (ed) Continuum micromechanics. Springer, Heidelberg, pp 61–130
32.
go back to reference Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512CrossRef Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512CrossRef
33.
go back to reference Søvik OP, Thaulow C (1997) Growth of spheroidal voids in elastic-plastic solids. Fatigue Fract Eng Mater Struct 20:1731–1744CrossRef Søvik OP, Thaulow C (1997) Growth of spheroidal voids in elastic-plastic solids. Fatigue Fract Eng Mater Struct 20:1731–1744CrossRef
34.
go back to reference Leblond J-B, Perrin G, Suquet P (1994) Exact results and approximate models for porous viscoplastic solids. Int J Plast 10:213–235CrossRef Leblond J-B, Perrin G, Suquet P (1994) Exact results and approximate models for porous viscoplastic solids. Int J Plast 10:213–235CrossRef
35.
go back to reference Garajeu M, Suquet P (1997) Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. J Mech Phys Solids 45:873–902MathSciNetCrossRef Garajeu M, Suquet P (1997) Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. J Mech Phys Solids 45:873–902MathSciNetCrossRef
36.
go back to reference Monchiet V, Charkaluk E, Kondo D (2007) An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields. CR Mécanique 335:32–41CrossRef Monchiet V, Charkaluk E, Kondo D (2007) An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields. CR Mécanique 335:32–41CrossRef
37.
go back to reference Monchiet V, Charkaluk E, Kondo D (2011) A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields. Eur J Mech A Solid 30:940–949CrossRef Monchiet V, Charkaluk E, Kondo D (2011) A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields. Eur J Mech A Solid 30:940–949CrossRef
38.
39.
go back to reference Leblond J-B, Morin L, Cazacu O (2014) An improved description of spherical void growth in plastic porous materials with finite porosities. Procedia Mater Sci 3:1232–1237CrossRefMATH Leblond J-B, Morin L, Cazacu O (2014) An improved description of spherical void growth in plastic porous materials with finite porosities. Procedia Mater Sci 3:1232–1237CrossRefMATH
40.
go back to reference Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I, Limit-analysis of some representative cell. J Mech Phys Solids 60:1020–1036MathSciNetCrossRef Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I, Limit-analysis of some representative cell. J Mech Phys Solids 60:1020–1036MathSciNetCrossRef
41.
go back to reference Leblond J-B, Gologanu M (2008) External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void. CR Mécanique 336:813–819CrossRef Leblond J-B, Gologanu M (2008) External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void. CR Mécanique 336:813–819CrossRef
42.
go back to reference Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II, Determination of yield criterion parameters. J Mech Phys Solids 60:1037–1058MathSciNetCrossRef Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II, Determination of yield criterion parameters. J Mech Phys Solids 60:1037–1058MathSciNetCrossRef
43.
go back to reference Madou K, Leblond J-B (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—I, Yield surfaces of representative cells. Eur J Mech A Solid 42:480–489CrossRef Madou K, Leblond J-B (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—I, Yield surfaces of representative cells. Eur J Mech A Solid 42:480–489CrossRef
44.
go back to reference Madou K, Leblond J-B, Morin L (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—II, Evolution of the length and orientation of the void axes. Eur J Mech A Solid 42:490–507CrossRefMATH Madou K, Leblond J-B, Morin L (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—II, Evolution of the length and orientation of the void axes. Eur J Mech A Solid 42:490–507CrossRefMATH
45.
go back to reference Pastor F, Kondo D (2013) Assessment of hollow spheroid models for ductile failure prediction by limit analysis and conic programming. Eur J Mech A Solid 38:100–114MathSciNetCrossRef Pastor F, Kondo D (2013) Assessment of hollow spheroid models for ductile failure prediction by limit analysis and conic programming. Eur J Mech A Solid 38:100–114MathSciNetCrossRef
46.
go back to reference Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A Solid 24:800–819CrossRef Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A Solid 24:800–819CrossRef
47.
go back to reference Thoré P, Pastor F, Pastor J (2011) Hollow sphere models, conic programming and third stress invariant. Eur J Mech A Solid 30:63–71CrossRefMATH Thoré P, Pastor F, Pastor J (2011) Hollow sphere models, conic programming and third stress invariant. Eur J Mech A Solid 30:63–71CrossRefMATH
48.
go back to reference Gologanu M (1997) Etude quelques problèmes de rupture ductile des métaux. Thèse de doctorat, Université Paris-6 Gologanu M (1997) Etude quelques problèmes de rupture ductile des métaux. Thèse de doctorat, Université Paris-6
49.
go back to reference Stewart JB, Cazacu O (2011) Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry. Int J Solids Struct 48:357–373CrossRef Stewart JB, Cazacu O (2011) Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry. Int J Solids Struct 48:357–373CrossRef
50.
go back to reference Cazacu O, Revil-Baudard B (2015) New three-dimensional plastic potentials for porous solids with a von Mises matrix. CR Mécanique 343:77–94CrossRef Cazacu O, Revil-Baudard B (2015) New three-dimensional plastic potentials for porous solids with a von Mises matrix. CR Mécanique 343:77–94CrossRef
51.
go back to reference Benallal A, Desmorat R, Fournage M (2014) An assessment of the role of the third stress invariant in the Gurson approach for ductile fracture. Eur J Mech A Solid 47:400–414MathSciNetCrossRef Benallal A, Desmorat R, Fournage M (2014) An assessment of the role of the third stress invariant in the Gurson approach for ductile fracture. Eur J Mech A Solid 47:400–414MathSciNetCrossRef
52.
go back to reference Weng GJ (1984) Some elastic properties of reinforced solids with special reference to isotropic ones containging spherical inclusions. Int J Eng Sci 22:845–856CrossRef Weng GJ (1984) Some elastic properties of reinforced solids with special reference to isotropic ones containging spherical inclusions. Int J Eng Sci 22:845–856CrossRef
53.
go back to reference Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574CrossRef
54.
go back to reference Stone, van RH, Cox TB, Low JR Jr, Psioda JA (1985) Microstructural aspects of fracture by dimpled fracture. Int Met Rev 30:157–179CrossRef Stone, van RH, Cox TB, Low JR Jr, Psioda JA (1985) Microstructural aspects of fracture by dimpled fracture. Int Met Rev 30:157–179CrossRef
55.
go back to reference Tanaka K, Mori T, Nakamura T (1970) Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix. Philos Mag 21:267–279CrossRef Tanaka K, Mori T, Nakamura T (1970) Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix. Philos Mag 21:267–279CrossRef
56.
go back to reference Gurland J (1972) Observations on the fracture of cementite particles in a spheroidized 1.05 % C steel deformed at room temperature. Acta Metall 20:735–741CrossRef Gurland J (1972) Observations on the fracture of cementite particles in a spheroidized 1.05 % C steel deformed at room temperature. Acta Metall 20:735–741CrossRef
57.
go back to reference Cox TB, Low JR Jr (1974) An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels. Metall Trans 5:1457–1470CrossRef Cox TB, Low JR Jr (1974) An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels. Metall Trans 5:1457–1470CrossRef
58.
go back to reference McMahon CJ Jr, Cohen M (1965) Initiation of cleavage in polycrystalline iron. Acta Metall 13:591–604CrossRef McMahon CJ Jr, Cohen M (1965) Initiation of cleavage in polycrystalline iron. Acta Metall 13:591–604CrossRef
59.
go back to reference Argon AS, Im J (1975) Separation of second phase particles in spheroidized 1045 steel, Cu-0.6Pct Cr alloy, and maraging steel in plastic straining. Metall Trans A 6:839–851CrossRef Argon AS, Im J (1975) Separation of second phase particles in spheroidized 1045 steel, Cu-0.6Pct Cr alloy, and maraging steel in plastic straining. Metall Trans A 6:839–851CrossRef
60.
go back to reference Goods SH, Brown LM (1979) The nucleation of cavities by plastic deformation. Acta Metall 27:1–15CrossRef Goods SH, Brown LM (1979) The nucleation of cavities by plastic deformation. Acta Metall 27:1–15CrossRef
61.
go back to reference Maire E, Buffiere JY, Salvo L, Blandin JJ, Ludwig W, Letang JM (2001) On the application of X-ray tomography in the field of materials science. Adv Eng Mater 3:539–546CrossRef Maire E, Buffiere JY, Salvo L, Blandin JJ, Ludwig W, Letang JM (2001) On the application of X-ray tomography in the field of materials science. Adv Eng Mater 3:539–546CrossRef
62.
go back to reference Chen ZT, Worswick MJ, Cinotti N, Pilkey AK, Lloyd DJ (2003) A linked FEM-damage percolation model of aluminum alloy sheet forming. Int J Plast 19:2099–2120CrossRef Chen ZT, Worswick MJ, Cinotti N, Pilkey AK, Lloyd DJ (2003) A linked FEM-damage percolation model of aluminum alloy sheet forming. Int J Plast 19:2099–2120CrossRef
63.
go back to reference Gurson AL (1975) Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth, and interaction. PhD thesis, Brown University, Providence, RI Gurson AL (1975) Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth, and interaction. PhD thesis, Brown University, Providence, RI
64.
go back to reference Rosenfield AR, Hahn GT (1966) Numerical descriptions of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel. ASM Trans 59:962–980 Rosenfield AR, Hahn GT (1966) Numerical descriptions of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel. ASM Trans 59:962–980
65.
go back to reference Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169CrossRef Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169CrossRef
66.
go back to reference Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. In: Mechanics of solids—The Rodney Hill 60th anniversary volume. Pergamon Press, Oxford, pp. 13–45 Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. In: Mechanics of solids—The Rodney Hill 60th anniversary volume. Pergamon Press, Oxford, pp. 13–45
67.
go back to reference Thomason PF (1968) A theory for ductile fracture by internal necking of cavities. J Inst Met 96:360–365 Thomason PF (1968) A theory for ductile fracture by internal necking of cavities. J Inst Met 96:360–365
68.
go back to reference Thomason PF (1981) Ductile fracture and the stability of incompressible plasticity in the presence of microvoids. Acta Metall 29:763–777CrossRef Thomason PF (1981) Ductile fracture and the stability of incompressible plasticity in the presence of microvoids. Acta Metall 29:763–777CrossRef
69.
go back to reference Thomason PF (1985) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33:1087–1095CrossRefMATH Thomason PF (1985) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33:1087–1095CrossRefMATH
70.
go back to reference Thomason PF (1993) Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing. Acta Metall Mater 41:2127–2134CrossRef Thomason PF (1993) Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing. Acta Metall Mater 41:2127–2134CrossRef
71.
go back to reference Zhang ZL, Niemi E (1995) A new failure criterion for the Gurson-Tvergaard dilational constitutive model. Int J Fract 70:321–334CrossRef Zhang ZL, Niemi E (1995) A new failure criterion for the Gurson-Tvergaard dilational constitutive model. Int J Fract 70:321–334CrossRef
72.
go back to reference Benzerga AA, Leblond J-B (2014) Effective yield criterion accounting for microvoid coalescence. J Appl Mech 81:031009CrossRef Benzerga AA, Leblond J-B (2014) Effective yield criterion accounting for microvoid coalescence. J Appl Mech 81:031009CrossRef
73.
go back to reference Morin L, Leblond J-B, Benzerga AA (2015) Coalescence of voids by internal necking, Theoretical estimates and numerical results. J Mech Phys Solids 75:140–158MathSciNetCrossRef Morin L, Leblond J-B, Benzerga AA (2015) Coalescence of voids by internal necking, Theoretical estimates and numerical results. J Mech Phys Solids 75:140–158MathSciNetCrossRef
74.
go back to reference McVeigh C, Vernerey F, Liu WK, Moran B, Olson G (2007) An interactive micro-void shear localization mechanism in high strength steels. J Mech Phys Solids 55:225–244CrossRef McVeigh C, Vernerey F, Liu WK, Moran B, Olson G (2007) An interactive micro-void shear localization mechanism in high strength steels. J Mech Phys Solids 55:225–244CrossRef
75.
go back to reference Barsoum I, Faleskog J (2007) Rupture in combined tension and shear, Experiments. Int J Solids Struct 44:1768–1786CrossRef Barsoum I, Faleskog J (2007) Rupture in combined tension and shear, Experiments. Int J Solids Struct 44:1768–1786CrossRef
76.
go back to reference Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solid 27:1–17CrossRef Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solid 27:1–17CrossRef
77.
go back to reference Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75:3343–3366CrossRefMATH Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75:3343–3366CrossRefMATH
78.
go back to reference Butcher C, Chen Z, Bardelcik A, Worswick M (2009) Damage-based finite-element modeling of tube hydroforming. Int J Fract 155:55–65CrossRef Butcher C, Chen Z, Bardelcik A, Worswick M (2009) Damage-based finite-element modeling of tube hydroforming. Int J Fract 155:55–65CrossRef
79.
go back to reference Stoughton TB, Yoon JW (2011) A new approach for failure criterion for sheet metals. Int J Plast 27:440–459CrossRef Stoughton TB, Yoon JW (2011) A new approach for failure criterion for sheet metals. Int J Plast 27:440–459CrossRef
80.
go back to reference Lecarme L, Tekoglu C, Pardoen T (2011) Void growth and coalescence in ductile solids with stage III and stage IV strain hardening. Int J Plast 27:1203–1223CrossRef Lecarme L, Tekoglu C, Pardoen T (2011) Void growth and coalescence in ductile solids with stage III and stage IV strain hardening. Int J Plast 27:1203–1223CrossRef
81.
go back to reference McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371CrossRef McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371CrossRef
82.
go back to reference Malcher L, Andrade Pires FM, César de Sá JMA (2014) An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228CrossRef Malcher L, Andrade Pires FM, César de Sá JMA (2014) An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228CrossRef
83.
go back to reference Jones RM (2008) Deformation Theory of Plasticity. Bull Ridge Corporation Jones RM (2008) Deformation Theory of Plasticity. Bull Ridge Corporation
84.
go back to reference Williams ML, Schapery RA (1965) Spherical flaw instability in hydrostatic tension. Int J Fract Mech 1:64–72CrossRef Williams ML, Schapery RA (1965) Spherical flaw instability in hydrostatic tension. Int J Fract Mech 1:64–72CrossRef
85.
go back to reference Jackiewicz J, Kuna M (2003) Non-local regularization for FE simulation of damage in ductile materials. Comp Mater Sci 28:684–695CrossRef Jackiewicz J, Kuna M (2003) Non-local regularization for FE simulation of damage in ductile materials. Comp Mater Sci 28:684–695CrossRef
86.
go back to reference Jackiewicz J (2011) Use of a modified Gurson model approach for the simulation of ductile fracture by growth and coalescence of microvoids under low, medium and high stress triaxiality loadings. Eng Fract Mech 78:487–502CrossRefMATH Jackiewicz J (2011) Use of a modified Gurson model approach for the simulation of ductile fracture by growth and coalescence of microvoids under low, medium and high stress triaxiality loadings. Eng Fract Mech 78:487–502CrossRefMATH
87.
go back to reference Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—results of a European numerical round robin. Fatigue Fract Eng Mater Struct 25:363–384CrossRefMATH Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—results of a European numerical round robin. Fatigue Fract Eng Mater Struct 25:363–384CrossRefMATH
88.
go back to reference Springmann M, Kuna M (2005) Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques. Comp Mater Sci 32:544–552CrossRef Springmann M, Kuna M (2005) Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques. Comp Mater Sci 32:544–552CrossRef
89.
go back to reference Springmann M, Kuna M (2006) Determination of ductile damage parameters by local deformation fields, Measurement and simulation. Arch Appl Mech 75:775–797CrossRef Springmann M, Kuna M (2006) Determination of ductile damage parameters by local deformation fields, Measurement and simulation. Arch Appl Mech 75:775–797CrossRef
90.
go back to reference Hariharan K, Chakraborti N, Barlat F, Lee M-G (2014) A novel multi-objective genetic algorithms-based calculation of Hill’s coefficients. Metall Mater Trans A 45:2704–2707CrossRefMATH Hariharan K, Chakraborti N, Barlat F, Lee M-G (2014) A novel multi-objective genetic algorithms-based calculation of Hill’s coefficients. Metall Mater Trans A 45:2704–2707CrossRefMATH
91.
go back to reference Zhang ZL (1996) A sensitivity analysis of material parameters for the Gurson constitutive model. Fatigue Fract Eng Mater Struct 19:561–570CrossRef Zhang ZL (1996) A sensitivity analysis of material parameters for the Gurson constitutive model. Fatigue Fract Eng Mater Struct 19:561–570CrossRef
92.
go back to reference Kiran R, Khandelwal K (2014) Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue Fract Eng Mater Struct 37:171–183CrossRef Kiran R, Khandelwal K (2014) Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue Fract Eng Mater Struct 37:171–183CrossRef
93.
go back to reference Jackiewicz J (2009) Calibration and evaluation of a combined fracture model of microvoid growth that may compete with shear in the polycrystalline microstructure by means of evolutionary algorithms. Comp Mater Sci 45:133–149CrossRefMATH Jackiewicz J (2009) Calibration and evaluation of a combined fracture model of microvoid growth that may compete with shear in the polycrystalline microstructure by means of evolutionary algorithms. Comp Mater Sci 45:133–149CrossRefMATH
94.
go back to reference Wen J, Huang Y, Hwang KC, Liu C, Li M (2005) The modified Gurson model accounting for the void size effect. Int J Plast 21:381–395 Wen J, Huang Y, Hwang KC, Liu C, Li M (2005) The modified Gurson model accounting for the void size effect. Int J Plast 21:381–395
95.
go back to reference Monchiet V, Bonnet G (2013) A Gurson-type model accounting for void size effects. Int J Solids Struct 50:320–327 Monchiet V, Bonnet G (2013) A Gurson-type model accounting for void size effects. Int J Solids Struct 50:320–327
96.
go back to reference Dormieux L, Kondo D (2010) An extension of Gurson model incorporating interface stresses effects. Int J Eng Sci 48:575–581 Dormieux L, Kondo D (2010) An extension of Gurson model incorporating interface stresses effects. Int J Eng Sci 48:575–581
Metadata
Title
Recent Trends in the Development of Gurson’s Model
Author
Jacek Jackiewicz
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-21467-2_17

Premium Partners