Skip to main content
Top
Published in: Journal of Materials Science 1/2019

06-09-2018 | Review

Reclamation of tungsten from carbide scraps and spent materials

Authors: Rajiv Ranjan Srivastava, Jae-chun Lee, Mooki Bae, Vinay Kumar

Published in: Journal of Materials Science | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper reviews the state-of-the-art recycling of tungsten from carbide (WC) scraps and other spent alloys generated by various production and application industries. With an aim of direct reuse or chemical recovery of tungsten, the reclamation of WC is commonly divided into three parts: (1) pyrometallurgy, (2) hydrometallurgy, and (3) a combined (pyro + hydro) metallurgical process. The pyrometallurgical process consists of a thermal treatment under an oxidizing, reducing, or carburizing condition and of breaking the structure of hardmetals by dissolving the binder metal in a molten bath to obtain WC from spent/scrap materials. The hydrometallurgical process, based on leaching in acid and/or alkali solutions, follows precipitation/solvent extraction/ion exchange/crystallization operations to concentrate and recover the salt/s of tungsten and associated metals. The combination of both processes is employed mainly to convert the carbide phase of WC (along with the binder and/or additive metals) to their oxide forms prior to leaching in the acid/alkali solution to enhance the extraction efficacy in the aqueous solution. A critical analysis with respect to the processing conditions for extracting tungsten with the binder metal cobalt from various scrap/spent materials is given. The present paper will be helpful in developing an overall understanding of tungsten reclamation from the WC and other alloys that can provide future research directions to obtain the sustainability of this strategically conflict element.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lassner E, Schubert WD (1999) Tungsten: properties, chemistry, technology of element, alloys and chemical compounds. Kluwer Academic/Plenum Publishers, New YorkCrossRef Lassner E, Schubert WD (1999) Tungsten: properties, chemistry, technology of element, alloys and chemical compounds. Kluwer Academic/Plenum Publishers, New YorkCrossRef
19.
go back to reference Katiyar PK, Randhawa NS, Hait J, Jana RK, Singh KK and Mankhand TR (2014) Proceedings of 18th International Conference on Nonferrous Minerals and Metals, Nagpur, Maharashtra, India Katiyar PK, Randhawa NS, Hait J, Jana RK, Singh KK and Mankhand TR (2014) Proceedings of 18th International Conference on Nonferrous Minerals and Metals, Nagpur, Maharashtra, India
20.
go back to reference Smith GR (1994) Materials flow of tungsten in the United States. Bureau of Mines Information Circular 9388, USBM, p 22 Smith GR (1994) Materials flow of tungsten in the United States. Bureau of Mines Information Circular 9388, USBM, p 22
22.
go back to reference Oakdene Hollins Ltd (2011) Study into the feasibility of protecting and recovering critical raw materials through infrastructure development in the south east of England. European Pathway to zero waste, UK, p 52 Oakdene Hollins Ltd (2011) Study into the feasibility of protecting and recovering critical raw materials through infrastructure development in the south east of England. European Pathway to zero waste, UK, p 52
25.
go back to reference Habashi F (1969) Extractive metallurgy, vol I. Science Publishers, Paris, p 77 Habashi F (1969) Extractive metallurgy, vol I. Science Publishers, Paris, p 77
33.
go back to reference Kurlov AS, Gusev AI (2013) Tungsten carbides: structure, properties and application in hardmetals. Springer, ChamCrossRef Kurlov AS, Gusev AI (2013) Tungsten carbides: structure, properties and application in hardmetals. Springer, ChamCrossRef
41.
go back to reference Barnard PG, Kenworthy H (1971) Reclamation of refractory carbides from carbide materials. US patent 3595484 Barnard PG, Kenworthy H (1971) Reclamation of refractory carbides from carbide materials. US patent 3595484
42.
go back to reference Hirose K, Aoki I (1993) Recycling cemented carbides without pollution sorting charging material for zinc process. In: Henein H, Oki T (eds) First international conference on processing materials for properties, The Minerals, Metals & Materials Society, Warrendale, PA, p 845 Hirose K, Aoki I (1993) Recycling cemented carbides without pollution sorting charging material for zinc process. In: Henein H, Oki T (eds) First international conference on processing materials for properties, The Minerals, Metals & Materials Society, Warrendale, PA, p 845
44.
go back to reference Altuncu E, Ustel F, Turk A, Ozturk S, Erdogan G (2013) Cutting-tool recycling process with the zinc-melt method for obtaining thermal-spray feedstock-spray feedstock powder. Mater Technol 47:115–118 Altuncu E, Ustel F, Turk A, Ozturk S, Erdogan G (2013) Cutting-tool recycling process with the zinc-melt method for obtaining thermal-spray feedstock-spray feedstock powder. Mater Technol 47:115–118
46.
go back to reference Kieffer BF, Baroch EF (1981) Procedings of extractive metallurgy of refractory metals. Sohn HY, Carlson ON, Smith JT (eds) The TMS-A1ME refractory metals committee and the physical chemistry of extractive metallurgy committee at the 110th AIME Annual Meeting, Chicago, p 273 Kieffer BF, Baroch EF (1981) Procedings of extractive metallurgy of refractory metals. Sohn HY, Carlson ON, Smith JT (eds) The TMS-A1ME refractory metals committee and the physical chemistry of extractive metallurgy committee at the 110th AIME Annual Meeting, Chicago, p 273
47.
go back to reference Kiefffer BF (1986) Processes for the recycling of tungsten carbide scrap. Int J Refract Met Hard Mater 5:65–68 Kiefffer BF (1986) Processes for the recycling of tungsten carbide scrap. Int J Refract Met Hard Mater 5:65–68
48.
go back to reference Kieffer BF, Lassner E (1988) Proceedings of 4th international Tungsten symposium. MPR Publishing Services Ltd, Shrewsbury, p 59 Kieffer BF, Lassner E (1988) Proceedings of 4th international Tungsten symposium. MPR Publishing Services Ltd, Shrewsbury, p 59
53.
go back to reference Lee G, Ha G, Kim B (1999) Synthesis of nanostructure W base composite powders by chemical processes. J Kor Inst Met Mater 37:1233–1237 Lee G, Ha G, Kim B (1999) Synthesis of nanostructure W base composite powders by chemical processes. J Kor Inst Met Mater 37:1233–1237
54.
go back to reference Eso O (2014) Proceedings of advances in tungsten, refractory and hardmaterials IX. Orlando, USA, p 65 Eso O (2014) Proceedings of advances in tungsten, refractory and hardmaterials IX. Orlando, USA, p 65
56.
go back to reference Kieffer BF (1982) Proceedings of international tungsten symposium—Tungsten—1982, San Francisco, USA, p 102 Kieffer BF (1982) Proceedings of international tungsten symposium—Tungsten—1982, San Francisco, USA, p 102
57.
go back to reference Walraedt J (1971) Proceedings of 7th international Plansee seminar, vol. IV(2). Metallwerk Plansee, Reutte, p 1 Walraedt J (1971) Proceedings of 7th international Plansee seminar, vol. IV(2). Metallwerk Plansee, Reutte, p 1
61.
go back to reference Alhazza AA (2008) Recycling of tungsten alloy swarf. Metall Mater Eng 2:219–222 Alhazza AA (2008) Recycling of tungsten alloy swarf. Metall Mater Eng 2:219–222
63.
go back to reference Zhang Z, Chen LB, He YH, Huang BY (2002) Recycling high density tungsten alloy powder by oxidation-reduction process. Trans Nonferrous Met Soc China 12:450–453 Zhang Z, Chen LB, He YH, Huang BY (2002) Recycling high density tungsten alloy powder by oxidation-reduction process. Trans Nonferrous Met Soc China 12:450–453
68.
go back to reference Fisher JK, Moyle DR (1993) Proceedings of the 13th International on Plansee Seminar vol 2. In: Bildstein H, Eck R (eds) PlanseeMetall A.G., Reutte, Austria, pp 425–439 Fisher JK, Moyle DR (1993) Proceedings of the 13th International on Plansee Seminar vol 2. In: Bildstein H, Eck R (eds) PlanseeMetall A.G., Reutte, Austria, pp 425–439
70.
go back to reference Yamamoto Y, Mizukami M, Matsumoto A (2005) Proceedings of the 16th International Plansee Seminar, vol 2, pp 492–505 Yamamoto Y, Mizukami M, Matsumoto A (2005) Proceedings of the 16th International Plansee Seminar, vol 2, pp 492–505
71.
go back to reference Ushijima K (1978) Production of WC powder from WO3 with added Co3O4. Jpn Met Soc J 42:871–874 Ushijima K (1978) Production of WC powder from WO3 with added Co3O4. Jpn Met Soc J 42:871–874
72.
go back to reference Takatsu S (1978) A new continuous process for production of WC–Co mixed powder by rotary kilns. Powder Met Int 10:13–15 Takatsu S (1978) A new continuous process for production of WC–Co mixed powder by rotary kilns. Powder Met Int 10:13–15
75.
77.
go back to reference Hartline AG, Campbell JA, Magel TT (1996) Process for reclaiming cemented metal carbide. US patent 3953194 A Hartline AG, Campbell JA, Magel TT (1996) Process for reclaiming cemented metal carbide. US patent 3953194 A
78.
go back to reference Joost T, Pirso J, Viljus M (2008) Proceedings of the 6th International DAAAM Baltic, Conference Industrial Eng., Tallinn, Estonia, p 24 Joost T, Pirso J, Viljus M (2008) Proceedings of the 6th International DAAAM Baltic, Conference Industrial Eng., Tallinn, Estonia, p 24
79.
go back to reference Joost T, Pirso J, Viljus M (2009) Proceedings of the 17th International Plansee Seminar, vol 2, p HM25/1 Joost T, Pirso J, Viljus M (2009) Proceedings of the 17th International Plansee Seminar, vol 2, p HM25/1
80.
go back to reference Joost R, Pirso J, Viljus M, Letunovitš S, Juhani K (2012) Recycling of WC–Co hardmetals by oxidation and carbothermal reduction in combination with reactive sintering. Est J Eng 18:127–130CrossRef Joost R, Pirso J, Viljus M, Letunovitš S, Juhani K (2012) Recycling of WC–Co hardmetals by oxidation and carbothermal reduction in combination with reactive sintering. Est J Eng 18:127–130CrossRef
81.
go back to reference Arumugavelu J (2012) Process for recycling of tungsten carbide alloy. US Patent 20120251416 A1 Arumugavelu J (2012) Process for recycling of tungsten carbide alloy. US Patent 20120251416 A1
83.
go back to reference Farrell G, Anderson DM, Walton ME (1985) Tungsten recovery from carbides. US Patent 4533527 A Farrell G, Anderson DM, Walton ME (1985) Tungsten recovery from carbides. US Patent 4533527 A
84.
go back to reference Sasai R, Santo A, Shimizu T, Kojima T, Itoh H (2002) Waste management and the environment. In: Almorza D, Brebbia CA, Sales D, Popov V (eds), WIT Press, Sounthampton, Boston, p 22 Sasai R, Santo A, Shimizu T, Kojima T, Itoh H (2002) Waste management and the environment. In: Almorza D, Brebbia CA, Sales D, Popov V (eds), WIT Press, Sounthampton, Boston, p 22
86.
go back to reference Piche FJ (1979) Recovery of tungsten carbide from scrap mining bits. US Patent 4170513 A Piche FJ (1979) Recovery of tungsten carbide from scrap mining bits. US Patent 4170513 A
87.
go back to reference Zou D (1989) Separation of tungsten and copper in the waste W–Cu alloys by the acidolysis method. Rare Met Mater Eng 4:39–41 Zou D (1989) Separation of tungsten and copper in the waste W–Cu alloys by the acidolysis method. Rare Met Mater Eng 4:39–41
88.
go back to reference Redden LD, Groves RD, Seidel DC (1988) Hydrometallurgical recovery of critical metals from hardface alloy grinding waste: a laboratory study, US BuMines; RI 9210 Redden LD, Groves RD, Seidel DC (1988) Hydrometallurgical recovery of critical metals from hardface alloy grinding waste: a laboratory study, US BuMines; RI 9210
91.
go back to reference Srivastava RR, Kim M, Lee J (2016) Proceedings of hydrometallurgy 2016. SAIMM, Cape town, South Africa, p 48 Srivastava RR, Kim M, Lee J (2016) Proceedings of hydrometallurgy 2016. SAIMM, Cape town, South Africa, p 48
92.
go back to reference Gürmen S, Friedrich B (2004) Recovery of cobalt powder and tungsten carbide from cemented carbide scrap. World Metall Erzmet 57:143–147 Gürmen S, Friedrich B (2004) Recovery of cobalt powder and tungsten carbide from cemented carbide scrap. World Metall Erzmet 57:143–147
93.
go back to reference Gürmen S, Stopic S, Friedrich B (2014) Recovery of cobalt powder and tungsten carbide from cemented carbide scrap. Part II: recovery of submicron cobalt powder from the leach solution. Erzmetall 57:341–345 Gürmen S, Stopic S, Friedrich B (2014) Recovery of cobalt powder and tungsten carbide from cemented carbide scrap. Part II: recovery of submicron cobalt powder from the leach solution. Erzmetall 57:341–345
94.
go back to reference Gürmen S (2005) Recovery of nano-sized cobalt powder from cemented carbide scrap. Turkish J Eng Env Sci 29:343–350 Gürmen S (2005) Recovery of nano-sized cobalt powder from cemented carbide scrap. Turkish J Eng Env Sci 29:343–350
98.
go back to reference Maclnnis MB, Vanderpool CD (1976) Process for the reclamation of uncemented tungsten carbide powders. US Patent 3947555 A Maclnnis MB, Vanderpool CD (1976) Process for the reclamation of uncemented tungsten carbide powders. US Patent 3947555 A
100.
go back to reference Meissl C (2001) Diploma Thesis on Synthese von cobaltoxiden und –hydroxide (in German), TU-Vienna Meissl C (2001) Diploma Thesis on Synthese von cobaltoxiden und –hydroxide (in German), TU-Vienna
102.
go back to reference Freemantle CS, Sacks N (2015) Recycling of cemented tungsten carbide mining tool scrap. J South Afr Inst Min Metall 115:1207–1213CrossRef Freemantle CS, Sacks N (2015) Recycling of cemented tungsten carbide mining tool scrap. J South Afr Inst Min Metall 115:1207–1213CrossRef
104.
go back to reference Lin JC, Lin JY, Jou SP (1996) Selective dissolution of the cobalt binder from scraps of cemented tungsten carbide in acids containing additives. Hydrometallurgy 43:47–61CrossRef Lin JC, Lin JY, Jou SP (1996) Selective dissolution of the cobalt binder from scraps of cemented tungsten carbide in acids containing additives. Hydrometallurgy 43:47–61CrossRef
105.
go back to reference Wongsisa S, Srichandr P, Poolthong N (2015) Development of manufacturing technology for direct recycling cemented carbide (WC-Co) tool scrap. Mat Trans JIM 56:70–77CrossRef Wongsisa S, Srichandr P, Poolthong N (2015) Development of manufacturing technology for direct recycling cemented carbide (WC-Co) tool scrap. Mat Trans JIM 56:70–77CrossRef
106.
go back to reference Shibata J, Murayama N, Niinae M, Furuyama T (2012) Development of advanced separation technology of rare metals using extraction and crystallization stripping. Mat Trans JIM 53:2181–2186CrossRef Shibata J, Murayama N, Niinae M, Furuyama T (2012) Development of advanced separation technology of rare metals using extraction and crystallization stripping. Mat Trans JIM 53:2181–2186CrossRef
107.
go back to reference Williams RK (2008) Fusion process using an alkali metal metalate. WO 2008073827 A9 Williams RK (2008) Fusion process using an alkali metal metalate. WO 2008073827 A9
108.
go back to reference Williams RK (2008) Fusion process using an alkali metal metalate. EP Patent 2102109 A2 Williams RK (2008) Fusion process using an alkali metal metalate. EP Patent 2102109 A2
110.
go back to reference Scott FH (1957) Extraction of tungsten from high speed grinding swarf and scale. Metallurgia 55:140–142 Scott FH (1957) Extraction of tungsten from high speed grinding swarf and scale. Metallurgia 55:140–142
111.
go back to reference Douglas DA, Menashi J, Rappas AS (1981) Process for recovering chromium, vanadium, molybdenum and tungsten values from a feed material. US Patent 4298581 A Douglas DA, Menashi J, Rappas AS (1981) Process for recovering chromium, vanadium, molybdenum and tungsten values from a feed material. US Patent 4298581 A
112.
go back to reference Kinstle GP, Magdics AT (2002) Process for recovering the carbide metal from metal carbide scrap. US Patent 6395241 B1 Kinstle GP, Magdics AT (2002) Process for recovering the carbide metal from metal carbide scrap. US Patent 6395241 B1
113.
go back to reference Lohse M (1999) Sodium tungstate preparation process. US Patent 5993756 A Lohse M (1999) Sodium tungstate preparation process. US Patent 5993756 A
115.
go back to reference Ishida T, Itakura T, Moriguchi H, Ikegaya A (2012) Development of technologies for recycling cemented carbide scrap and reducing tungsten use in cemented carbide tools. SEI Tech Rev 75:38–46 Ishida T, Itakura T, Moriguchi H, Ikegaya A (2012) Development of technologies for recycling cemented carbide scrap and reducing tungsten use in cemented carbide tools. SEI Tech Rev 75:38–46
116.
go back to reference Fruchter M, Moscovici A (1986) Process for the recovery of tungsten in a pure form from tungsten-containing materials. US Patent 4629503 A Fruchter M, Moscovici A (1986) Process for the recovery of tungsten in a pure form from tungsten-containing materials. US Patent 4629503 A
117.
go back to reference Douglas AD, Reilly KT, Landmessel JE (1986) Controllable nitrate fusion. US Patent 4603043 A Douglas AD, Reilly KT, Landmessel JE (1986) Controllable nitrate fusion. US Patent 4603043 A
118.
go back to reference Gupta CK, Suri AK (1994) Extractive metallurgy of niobium. CRC Press Inc, Florida, p 138 Gupta CK, Suri AK (1994) Extractive metallurgy of niobium. CRC Press Inc, Florida, p 138
120.
go back to reference Vanderpool CA, Wolfe TA, Miller MJ (1998) Reclamation of tungsten values from tungsten-thoria. US Patent 5819158 Vanderpool CA, Wolfe TA, Miller MJ (1998) Reclamation of tungsten values from tungsten-thoria. US Patent 5819158
121.
go back to reference Boyer CW, Maclnnis MB, Vanderpool CD (1975) Process for recovering tungsten from tungsten carbide containing an iron group of metals. US Patent 3887680 A Boyer CW, Maclnnis MB, Vanderpool CD (1975) Process for recovering tungsten from tungsten carbide containing an iron group of metals. US Patent 3887680 A
122.
go back to reference Martin BE, Ritsko JE, Acla HL (1981) Process for removing tungsten from cemented tungsten carbide. US Patent 4255397 A Martin BE, Ritsko JE, Acla HL (1981) Process for removing tungsten from cemented tungsten carbide. US Patent 4255397 A
123.
go back to reference Quatrini LR (1981) Process for recovering tungsten from cemented tungsten carbide. US Patent 4256708 A Quatrini LR (1981) Process for recovering tungsten from cemented tungsten carbide. US Patent 4256708 A
124.
go back to reference Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Texas Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Texas
126.
go back to reference Seegopaul P, Wu L (1997) Reclamation process for tungsten carbide and tungsten-based materials. US Patent 5613998 A Seegopaul P, Wu L (1997) Reclamation process for tungsten carbide and tungsten-based materials. US Patent 5613998 A
127.
go back to reference Luidold S, Angerer T, Antrekowitsch H (2012) Recovery of tungsten from waste material by ammonium leaching. EP Patent 2450312 A1 Luidold S, Angerer T, Antrekowitsch H (2012) Recovery of tungsten from waste material by ammonium leaching. EP Patent 2450312 A1
128.
go back to reference Seegopaul P, Wu L (1998) Reclamation process for tungsten carbide/cobalt using acid digestion. US Patent 5728197 A Seegopaul P, Wu L (1998) Reclamation process for tungsten carbide/cobalt using acid digestion. US Patent 5728197 A
130.
go back to reference Wainer E (1956) Process for recovery of tungsten values. US Patent 2735748 A Wainer E (1956) Process for recovery of tungsten values. US Patent 2735748 A
131.
go back to reference Reilly KT (1983) Recovery of refractory metal values from scrap cemented carbide. US Patent 4406866 A Reilly KT (1983) Recovery of refractory metal values from scrap cemented carbide. US Patent 4406866 A
132.
go back to reference Seegopaul P and Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide. US Patent 6524366 B1 Seegopaul P and Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide. US Patent 6524366 B1
Metadata
Title
Reclamation of tungsten from carbide scraps and spent materials
Authors
Rajiv Ranjan Srivastava
Jae-chun Lee
Mooki Bae
Vinay Kumar
Publication date
06-09-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2876-1

Other articles of this Issue 1/2019

Journal of Materials Science 1/2019 Go to the issue

Premium Partners