Skip to main content
Top
Published in: Journal of Materials Science 13/2014

01-07-2014

Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments

Authors: Aili Sun, Jinghua Liu, Chengbao Jiang

Published in: Journal of Materials Science | Issue 13/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to study the texture evolution and magnetostriction behavior in the rolled Fe–Ga–B sheets during the heat treatments from low to high temperatures, (Fe81Ga19)98B2 sheets were prepared and investigated. The phase structure, recrystallization, grain size, texture evolution, and magnetostriction behavior during the annealing from 525 to 1200 °C for 1–5 h were investigated using X-ray diffraction, electron backscattering diffraction, and standard strain-gauge measurements. Results indicated that the primary recrystallization temperature for 1-h annealing was found as 525–575 °C in (Fe81Ga19)98B2 sheets. Annealing the sample below 575 °C for 1 h, the release of rolling stress and increase of 〈100〉 η-fiber texture during the primary recrystallization jointly resulted in a rapid improvement in magnetostriction. After annealed between 575 and 1100 °C for 1 h, the grains of the sheets underwent a normal growth, and the three (α-, γ- and η-fiber) types of textures kept an approximate balance, leading to a plateau of magnetostriction around 75 ppm. When the abnormal grain growth proceeded above 1100 °C for 1 h, the proportion of η-fiber texture markedly increased, and the magnetostriction was subsequently increased to 97 ppm. For longer annealing durations, the strong ideal cube texture (η-fiber) was firstly formed and then changed to undesired texture (γ-fiber), producing a corresponding magnetostriction peak of 136 ppm at 2 h for the annealing at 1200 °C. The clear correlation among heat treatments, recrystallization, texture, and magnetostriction provides an essential understanding for Fe–Ga–B alloy sheets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36:3238–3240CrossRef Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36:3238–3240CrossRef
2.
go back to reference Cullen JR, Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA (2001) Magnetoelasticity of Fe–Ga and Fe–Al alloys. J Magn Magn Mater 226–230:948–949CrossRef Cullen JR, Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA (2001) Magnetoelasticity of Fe–Ga and Fe–Al alloys. J Magn Magn Mater 226–230:948–949CrossRef
3.
go back to reference Srisukhumbowornchai N, Guruswamy S (2001) Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J Appl Phys 90:5680–5688CrossRef Srisukhumbowornchai N, Guruswamy S (2001) Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J Appl Phys 90:5680–5688CrossRef
4.
go back to reference Liu JH, Wang ZB, Jiang CB, Xu HB (2010) Magnetostriction under high prestress in Fe81Ga19 crystal. J Appl Phys 108:033913–033914CrossRef Liu JH, Wang ZB, Jiang CB, Xu HB (2010) Magnetostriction under high prestress in Fe81Ga19 crystal. J Appl Phys 108:033913–033914CrossRef
5.
go back to reference Guruswamy S, Srisukhumbowornchai N, Clark AE, Restorff JB, Wun-Fogle M (2000) Strong, ductile, and low-field-magnetostrictive alloys based on Fe–Ga. Scripta Mater 43:239–244CrossRef Guruswamy S, Srisukhumbowornchai N, Clark AE, Restorff JB, Wun-Fogle M (2000) Strong, ductile, and low-field-magnetostrictive alloys based on Fe–Ga. Scripta Mater 43:239–244CrossRef
6.
go back to reference Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA, Cullen JR (2001) Effect of quenching on the magnetostriction on Fe1−x Ga x (0.13 < x < 0.21). IEEE Trans Magn 37:2678–2680CrossRef Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA, Cullen JR (2001) Effect of quenching on the magnetostriction on Fe1−x Ga x (0.13 < x < 0.21). IEEE Trans Magn 37:2678–2680CrossRef
7.
go back to reference Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M (2003) Mechanical properties of magnetostrictive iron–gallium alloys. Proc SPIE 5053:534–543CrossRef Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M (2003) Mechanical properties of magnetostrictive iron–gallium alloys. Proc SPIE 5053:534–543CrossRef
8.
go back to reference Olabi AG, Grunwald A (2008) Design and application of magnetostrictive materials. Mater Des 29:469–483CrossRef Olabi AG, Grunwald A (2008) Design and application of magnetostrictive materials. Mater Des 29:469–483CrossRef
9.
go back to reference Downey PR, Flatau AB (2005) Magnetoelastic bending of Galfenol for sensor applications. J Appl Phys 97:10R505-3CrossRef Downey PR, Flatau AB (2005) Magnetoelastic bending of Galfenol for sensor applications. J Appl Phys 97:10R505-3CrossRef
10.
go back to reference Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA (2003) Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys 93:8621–8623CrossRef Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA (2003) Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys 93:8621–8623CrossRef
11.
go back to reference Srisukhumbowornchai N, Guruswamy S (2004) Crystallographic textures in rolled and annealed Fe–Ga and Fe–Al alloys. Metall Mater Trans A 35:2963–2970CrossRef Srisukhumbowornchai N, Guruswamy S (2004) Crystallographic textures in rolled and annealed Fe–Ga and Fe–Al alloys. Metall Mater Trans A 35:2963–2970CrossRef
12.
go back to reference Na SM, Flatau AB (2005) Magnetostriction and surface-energy-induced selective grain growth in rolled Galfenol doped with sulfur. Proc SPIE 5761:192–199CrossRef Na SM, Flatau AB (2005) Magnetostriction and surface-energy-induced selective grain growth in rolled Galfenol doped with sulfur. Proc SPIE 5761:192–199CrossRef
13.
go back to reference Summers EM, Meloy R, Na S-M (2009) Magnetostriction and texture relationships in annealed galfenol alloys. J Appl Phys 105:07A922-923CrossRef Summers EM, Meloy R, Na S-M (2009) Magnetostriction and texture relationships in annealed galfenol alloys. J Appl Phys 105:07A922-923CrossRef
14.
go back to reference Li JH, Gao XX, Xie JX, Yuan C, Zhu J, Yu RB (2012) Recrystallization behavior and magnetostriction under pre-compressive stress of Fe–Ga–B sheets. Intermetallics 26:66–71CrossRef Li JH, Gao XX, Xie JX, Yuan C, Zhu J, Yu RB (2012) Recrystallization behavior and magnetostriction under pre-compressive stress of Fe–Ga–B sheets. Intermetallics 26:66–71CrossRef
15.
go back to reference Na SM, Flatau AB (2012) Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation. Scripta Mater 66:307–310CrossRef Na SM, Flatau AB (2012) Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation. Scripta Mater 66:307–310CrossRef
16.
go back to reference Na SM, Flatau AB (2007) Secondary recrystallization, crystallographic texture and magnetostriction in rolled Fe–Ga based alloys. J Appl Phys 101:09N518-3CrossRef Na SM, Flatau AB (2007) Secondary recrystallization, crystallographic texture and magnetostriction in rolled Fe–Ga based alloys. J Appl Phys 101:09N518-3CrossRef
17.
go back to reference Li J, Gao X, Zhu J, He C, Qiao J, Zhang M (2009) Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy. J Alloy Compd 476:529–533CrossRef Li J, Gao X, Zhu J, He C, Qiao J, Zhang M (2009) Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy. J Alloy Compd 476:529–533CrossRef
18.
go back to reference Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC (2010) Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scripta Mater 63:246–249CrossRef Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC (2010) Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scripta Mater 63:246–249CrossRef
19.
go back to reference Na SM, Flatau AB (2012) Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct 21:055024-10 Na SM, Flatau AB (2012) Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct 21:055024-10
20.
go back to reference Cheng LM, Nolting AE, Voyzelle B, Galvani C (2007) Deformation behavior of polycrystalline Galfenol at elevated temperatures. Proc SPIE 6526:N5262 Cheng LM, Nolting AE, Voyzelle B, Galvani C (2007) Deformation behavior of polycrystalline Galfenol at elevated temperatures. Proc SPIE 6526:N5262
21.
go back to reference Na SM, Flatau AB (2008) Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys. J Appl Phys 103:07D304-3CrossRef Na SM, Flatau AB (2008) Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys. J Appl Phys 103:07D304-3CrossRef
22.
go back to reference Li J, Gao X, Zhu J, Li J, Zhang M (2009) Ductility enhancement and magnetostriction of polycrystalline Fe–Ga based alloys. J Alloy Compd 484:203–206CrossRef Li J, Gao X, Zhu J, Li J, Zhang M (2009) Ductility enhancement and magnetostriction of polycrystalline Fe–Ga based alloys. J Alloy Compd 484:203–206CrossRef
23.
go back to reference Huang M, Lograsso TA, Clark AE, Restorff JB, Wun-Fogle M (2008) Effect of interstitial additions on magnetostriction in Fe–Ga alloys. J Appl Phys 103:07B314-3 Huang M, Lograsso TA, Clark AE, Restorff JB, Wun-Fogle M (2008) Effect of interstitial additions on magnetostriction in Fe–Ga alloys. J Appl Phys 103:07B314-3
24.
go back to reference Bormio-Nunes C, dos Santos CT, Dias MB, Doerr M, Granovsky S, Loewenhaupt M (2012) Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron. J Alloy Compd 539:226–232CrossRef Bormio-Nunes C, dos Santos CT, Dias MB, Doerr M, Granovsky S, Loewenhaupt M (2012) Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron. J Alloy Compd 539:226–232CrossRef
25.
go back to reference Bormio-Nunes C, dos Santos CT, Leandro IF, Turtelli RS, Grossinger R, Atif M (2011) Improved magnetostriction of Fe72Ga28 boron doped alloys. J Appl Phys 109:07A934-3 Bormio-Nunes C, dos Santos CT, Leandro IF, Turtelli RS, Grossinger R, Atif M (2011) Improved magnetostriction of Fe72Ga28 boron doped alloys. J Appl Phys 109:07A934-3
26.
go back to reference Gong Y, Jiang CB, Xu HB (2006) Effects of boron addition on phase structure and magnetostriction of Fe–Ga alloys. Acta Metall Sin 42:830–834 Gong Y, Jiang CB, Xu HB (2006) Effects of boron addition on phase structure and magnetostriction of Fe–Ga alloys. Acta Metall Sin 42:830–834
27.
go back to reference Lograsso TA, Summers EM (2006) Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng A 416:240–245CrossRef Lograsso TA, Summers EM (2006) Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng A 416:240–245CrossRef
28.
go back to reference Lograsso TA, Ross AR, Schlagel DL, Clark AE, Wun-Fogle M (2003) Structural transformations in quenched Fe–Ga alloys. J Alloy Compd 350:95–101CrossRef Lograsso TA, Ross AR, Schlagel DL, Clark AE, Wun-Fogle M (2003) Structural transformations in quenched Fe–Ga alloys. J Alloy Compd 350:95–101CrossRef
29.
go back to reference Yu LG, Chen XJ, Khor KA, Sundararajan G (2005) FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics. Acta Mater 53:2361–2368CrossRef Yu LG, Chen XJ, Khor KA, Sundararajan G (2005) FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics. Acta Mater 53:2361–2368CrossRef
31.
go back to reference Bormio-Nunes C, Dias MB, Ghivelder L (2013) High magnetostriction of the polycrystalline alloy (Fe0.8Al0.2)97B3. J Alloy Compd 574:467–471CrossRef Bormio-Nunes C, Dias MB, Ghivelder L (2013) High magnetostriction of the polycrystalline alloy (Fe0.8Al0.2)97B3. J Alloy Compd 574:467–471CrossRef
32.
go back to reference Liang YF, Ge JW, Fang XS, Ye F, Lin JP (2013) Hot deformation behavior and softening mechanism of Fe-6.5 wt% Si alloy. Mater Sci Eng A 570:8–12CrossRef Liang YF, Ge JW, Fang XS, Ye F, Lin JP (2013) Hot deformation behavior and softening mechanism of Fe-6.5 wt% Si alloy. Mater Sci Eng A 570:8–12CrossRef
33.
go back to reference Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A 540:1–12CrossRef Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A 540:1–12CrossRef
34.
go back to reference Zhang Y, Tao NR, Lu K (2008) Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater 56:2429–2440CrossRef Zhang Y, Tao NR, Lu K (2008) Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater 56:2429–2440CrossRef
35.
go back to reference Chan Hee P, Jong Woo W, Jin-Woo P, Semiatin SL, Chong Soo L (2012) Mechanisms and kinetics of static spheroidization of hot-worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a lamellar microstructure. Metall Mater Trans A 43:977–985CrossRef Chan Hee P, Jong Woo W, Jin-Woo P, Semiatin SL, Chong Soo L (2012) Mechanisms and kinetics of static spheroidization of hot-worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a lamellar microstructure. Metall Mater Trans A 43:977–985CrossRef
36.
go back to reference Asuda T, Morikawa T, Nakayama Y, Suzuki S (1997) Grain-boundary migration of quartz during annealing experiments at high temperatures and pressures, with implications for metamorphic geology. J Metamorph Geol 15:311–322CrossRef Asuda T, Morikawa T, Nakayama Y, Suzuki S (1997) Grain-boundary migration of quartz during annealing experiments at high temperatures and pressures, with implications for metamorphic geology. J Metamorph Geol 15:311–322CrossRef
37.
go back to reference Yoshitomi Y, Iwayama K, Nagashima T, Harase J, Takahashi N (1993) Coincidence grain-boundary and role of inhibitor for secondary recrystallization in Fe-3 % Si alloy. Acta Metall Mater 41:1577–1585CrossRef Yoshitomi Y, Iwayama K, Nagashima T, Harase J, Takahashi N (1993) Coincidence grain-boundary and role of inhibitor for secondary recrystallization in Fe-3 % Si alloy. Acta Metall Mater 41:1577–1585CrossRef
38.
go back to reference Suok-Min N, Jin-Hyeong Y, Flatau AB (2009) Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide. IEEE Trans Magn 45:4132–4135CrossRef Suok-Min N, Jin-Hyeong Y, Flatau AB (2009) Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide. IEEE Trans Magn 45:4132–4135CrossRef
39.
go back to reference Chun H, Na S-M, Yoo J-H, Wuttig M, Flatau AB (2011) Tension and strain annealing for abnormal grain growth in magnetostrictive Galfenol rolled sheet. J Appl Phys 109:07A941–943CrossRef Chun H, Na S-M, Yoo J-H, Wuttig M, Flatau AB (2011) Tension and strain annealing for abnormal grain growth in magnetostrictive Galfenol rolled sheet. J Appl Phys 109:07A941–943CrossRef
40.
go back to reference Raabe D, Lücke K (1992) Annealing textures of bcc metals. Scripta Metall Mater 27:1533–1538CrossRef Raabe D, Lücke K (1992) Annealing textures of bcc metals. Scripta Metall Mater 27:1533–1538CrossRef
41.
go back to reference Raabe D, Lücke K (1994) Rolling and annealing textures of bcc metals. Mater Sci Forum 157:597–610CrossRef Raabe D, Lücke K (1994) Rolling and annealing textures of bcc metals. Mater Sci Forum 157:597–610CrossRef
Metadata
Title
Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments
Authors
Aili Sun
Jinghua Liu
Chengbao Jiang
Publication date
01-07-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8156-9

Other articles of this Issue 13/2014

Journal of Materials Science 13/2014 Go to the issue

Premium Partners