Skip to main content
Top

2020 | OriginalPaper | Chapter

29. Reduced Order Model of Encapsulated PCMs-Based Thermal Energy Storage

Authors : Mohit Jain, Appasaheb Raul, Sandip K. Saha

Published in: Advances in Energy Research, Vol. 1

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a reduced order model of latent heat thermal energy storage (LHTES) containing spherical capsules filled with phase change material (PCM) is presented. The numerical method is based on the two-temperature non-equilibrium energy equations for heat transfer fluid (HTF) and PCM coupled with the enthalpy method to account for phase change in PCM. The numerical model is validated with the experimental results reported in the literature. The effects of porosity, capsule diameter, and capsule thickness on the temperature of HTF at the outlet of LHTES for charging period are studied. It is found that the stabilization time can be increased with low porosity and low mass flow rate, whereas the capsule shell thickness negligibly influences the heat transfer process from HTF to PCM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Q. Mao, Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant. Renew. Sustain. Energy Rev. 59, 320–327 (2016)CrossRef Q. Mao, Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant. Renew. Sustain. Energy Rev. 59, 320–327 (2016)CrossRef
2.
go back to reference A.F. Regin, S.C. Solanki, J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew. Energy 34(7), 1765–1773 (2009)CrossRef A.F. Regin, S.C. Solanki, J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew. Energy 34(7), 1765–1773 (2009)CrossRef
3.
go back to reference K.M. Powell, T.F. Edgar, Modeling and control of a solar thermal power plant with thermal energy storage. Chem. Eng. Sci. 71, 138–145 (2012)CrossRef K.M. Powell, T.F. Edgar, Modeling and control of a solar thermal power plant with thermal energy storage. Chem. Eng. Sci. 71, 138–145 (2012)CrossRef
4.
go back to reference S. Lakhani, A. Raul, S.K. Saha, Dynamic modelling of ORC-based solar thermal power plant integrated with multitube shell and tube latent heat thermal storage system. Appl. Therm. Eng. 123, 458–470 (2017)CrossRef S. Lakhani, A. Raul, S.K. Saha, Dynamic modelling of ORC-based solar thermal power plant integrated with multitube shell and tube latent heat thermal storage system. Appl. Therm. Eng. 123, 458–470 (2017)CrossRef
5.
go back to reference K.A.R. Ismail, J.R. Henriquez, Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl. Therm. Eng. 19, 757–788 (1999)CrossRef K.A.R. Ismail, J.R. Henriquez, Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl. Therm. Eng. 19, 757–788 (1999)CrossRef
6.
go back to reference S. Wu, G. Fang, Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material. Energy Build. 43(5), 1091–1096 (2011)CrossRef S. Wu, G. Fang, Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material. Energy Build. 43(5), 1091–1096 (2011)CrossRef
7.
go back to reference G. Manfrida, R. Secchia, K. Stańczyk, Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle. Appl. Energy 179, 378–388 (2016)CrossRef G. Manfrida, R. Secchia, K. Stańczyk, Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle. Appl. Energy 179, 378–388 (2016)CrossRef
8.
go back to reference N. Nallusamy, S. Sampath, R. Velraj, Experimental investigated with a combined sensible and latent heat storage system integrated with constant/varying(solar) heat sources. Renew. Energy 32, 1206–1227 (2007)CrossRef N. Nallusamy, S. Sampath, R. Velraj, Experimental investigated with a combined sensible and latent heat storage system integrated with constant/varying(solar) heat sources. Renew. Energy 32, 1206–1227 (2007)CrossRef
9.
go back to reference G.G Brown et al, Unit Operations (Wiley and Chapman & Hall, New York and London, 1950) G.G Brown et al, Unit Operations (Wiley and Chapman & Hall, New York and London, 1950)
10.
go back to reference K. Bhagat, S.K. Saha, Numerical analysis of latent thermal energy storage using encapsulated phase change material. Renew. Energy 95, 323–336 (2016)CrossRef K. Bhagat, S.K. Saha, Numerical analysis of latent thermal energy storage using encapsulated phase change material. Renew. Energy 95, 323–336 (2016)CrossRef
11.
go back to reference A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy porosity technique for modeling convection-diffusion phase change: application to the melting of pure metal. Numer. Heat Transf. 13, 297–318 (1988)CrossRef A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy porosity technique for modeling convection-diffusion phase change: application to the melting of pure metal. Numer. Heat Transf. 13, 297–318 (1988)CrossRef
12.
go back to reference G.S. Beavers, E.M. Sparrow, D.E. Rodenz, Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40, 655–660 (1973)CrossRef G.S. Beavers, E.M. Sparrow, D.E. Rodenz, Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40, 655–660 (1973)CrossRef
13.
go back to reference N. Wakao, S. Kaguei, T. Funazkri, Effect of fluid dispersion coefficient on particle-to-fluid heat transfer coefficient in packed beds: correlation of Nusselt numbers. Chem. Eng. Sci. 34, 325–336 (1979)CrossRef N. Wakao, S. Kaguei, T. Funazkri, Effect of fluid dispersion coefficient on particle-to-fluid heat transfer coefficient in packed beds: correlation of Nusselt numbers. Chem. Eng. Sci. 34, 325–336 (1979)CrossRef
14.
go back to reference A. Montillet, E. Akkari, J. Comiti, About a correlating equation for predicting pressure drops through packed beds of spheres in a large range of Reynolds number. Chem. Eng. Process. 46, 329–333 (2007)CrossRef A. Montillet, E. Akkari, J. Comiti, About a correlating equation for predicting pressure drops through packed beds of spheres in a large range of Reynolds number. Chem. Eng. Process. 46, 329–333 (2007)CrossRef
15.
go back to reference A. Shinde, S. Arpit, K.M. Pramod, P.V.C. Rao, S.K. Saha, Heat transfer characterization and optimization of latent heat thermal storage system using fins for medium temperature solar applications. J. of Sol. Energy Eng., ASME 139, 031003-031003-10 (2017) A. Shinde, S. Arpit, K.M. Pramod, P.V.C. Rao, S.K. Saha, Heat transfer characterization and optimization of latent heat thermal storage system using fins for medium temperature solar applications. J. of Sol. Energy Eng., ASME 139, 031003-031003-10 (2017)
Metadata
Title
Reduced Order Model of Encapsulated PCMs-Based Thermal Energy Storage
Authors
Mohit Jain
Appasaheb Raul
Sandip K. Saha
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2666-4_29