Skip to main content
Top

2022 | OriginalPaper | Chapter

Reduced Sum Implementation of the BURA Method for Spectral Fractional Diffusion Problems

Authors : Stanislav Harizanov, Nikola Kosturski, Ivan Lirkov, Svetozar Margenov, Yavor Vutov

Published in: Large-Scale Scientific Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The numerical solution of spectral fractional diffusion problems in the form \({\mathcal A}^\alpha u = f\) is studied, where \(\mathcal A\) is a selfadjoint elliptic operator in a bounded domain \(\varOmega \subset {\mathbb R}^d\), and \(\alpha \in (0,1]\). The finite difference approximation of the problem leads to the system \({\mathbb A}^\alpha {\mathbf{u}} = {\mathbf{f}}\), where \({\mathbb A}\) is a sparse, symmetric and positive definite (SPD) matrix, and \({\mathbb A}^\alpha \) is defined by its spectral decomposition. In the case of finite element approximation, \({\mathbb A}\) is SPD with respect to the dot product associated with the mass matrix. The BURA method is introduced by the best uniform rational approximation of degree k of \(t^{\alpha }\) in [0, 1], denoted by \(r_{\alpha ,k}\). Then the approximation \(\mathbf{u}_k\approx \mathbf{u}\) has the form \(\mathbf{u}_k = c_0 {\mathbf{f}} +\sum _{i=1}^k c_i({\mathbb A} - {\widetilde{d}}_i {\mathbb I})^{-1}{\mathbf{f}}\), \({\widetilde{d}}_i<0\), thus requiring the solving of k auxiliary linear systems with sparse SPD matrices. The BURA method has almost optimal computational complexity, assuming that an optimal PCG iterative solution method is applied to the involved auxiliary linear systems. The presented analysis shows that the absolute values of first \(\left\{ {\widetilde{d}}_i\right\} _{i=1}^{k'}\) can be extremely large. In such a case the condition number of \({\mathbb A} - {\widetilde{d}}_i {\mathbb I}\) is practically equal to one. Obviously, such systems do not need preconditioning. The next question is if we can replace their solution by directly multiplying \({\mathbf{f}}\) with \(-c_i/{\widetilde{d}}_i\). Comparative analysis of numerical results is presented as a proof-of-concept for the proposed RS-BURA method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84(295), 2083–2110 (2015)MathSciNetCrossRef Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84(295), 2083–2110 (2015)MathSciNetCrossRef
3.
go back to reference Harizanov, S., Kosturski, N., Margenov, S., Vutov, Y.: Neumann fractional diffusion problems: BURA solution methods and algorithms. Math. Comput. Simul. 189, 85–98 (2020)MathSciNetCrossRef Harizanov, S., Kosturski, N., Margenov, S., Vutov, Y.: Neumann fractional diffusion problems: BURA solution methods and algorithms. Math. Comput. Simul. 189, 85–98 (2020)MathSciNetCrossRef
4.
go back to reference Harizanov, S., Lazarov, R., Margenov, S.: A survey on numerical methods for spectral space-fractional diffusion problems. Frac. Calc. Appl. Anal. 23, 1605–1646 (2020)MathSciNetCrossRef Harizanov, S., Lazarov, R., Margenov, S.: A survey on numerical methods for spectral space-fractional diffusion problems. Frac. Calc. Appl. Anal. 23, 1605–1646 (2020)MathSciNetCrossRef
6.
go back to reference Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Pasciak, J.: Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation. J. Comput. Phys. 408, 109285 (2020) Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Pasciak, J.: Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation. J. Comput. Phys. 408, 109285 (2020)
7.
go back to reference Hofreither, C.: A unified view of some numerical methods for fractional diffusion. Comput. Math. Appl. 80(2), 332–350 (2020)MathSciNetCrossRef Hofreither, C.: A unified view of some numerical methods for fractional diffusion. Comput. Math. Appl. 80(2), 332–350 (2020)MathSciNetCrossRef
9.
go back to reference Stahl, H.: Best uniform rational approximation of \(x^\alpha \) on [0, 1]. Bull. Amer. Math. Soc. (NS) 28(1), 116–122 (1993)MathSciNetCrossRef Stahl, H.: Best uniform rational approximation of \(x^\alpha \) on [0, 1]. Bull. Amer. Math. Soc. (NS) 28(1), 116–122 (1993)MathSciNetCrossRef
10.
11.
go back to reference Varga, R.S., Carpenter, A.J.: Some numerical results on best uniform rational approximation of \(x^\alpha \) on \([0, 1]\). Numer. Algorithms 2(2), 171–185 (1992)MathSciNetCrossRef Varga, R.S., Carpenter, A.J.: Some numerical results on best uniform rational approximation of \(x^\alpha \) on \([0, 1]\). Numer. Algorithms 2(2), 171–185 (1992)MathSciNetCrossRef
Metadata
Title
Reduced Sum Implementation of the BURA Method for Spectral Fractional Diffusion Problems
Authors
Stanislav Harizanov
Nikola Kosturski
Ivan Lirkov
Svetozar Margenov
Yavor Vutov
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97549-4_6

Premium Partner