Skip to main content
Top
Published in: Cluster Computing 3/2019

03-02-2018

Region segmentation model for wireless sensor networks considering optimal energy conservation constraints

Authors: Xi Chen, Tao Wu

Published in: Cluster Computing | Special Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to improve the life cycle of wireless sensor networks as well as reducing the energy cost, the structural optimization and energy conservation for region segmentation are designed. A region segmentation model for wireless sensor networks based on optimal energy conservation constraints is proposed. The initial network topology for node distribution of wireless sensor networks is constructed. The equivalent network-wide energy balance topology is used for optimal calculation of the coverage area of the sensor network and the shortest path optimization method is used for energy conservation design for sensor network nodes. According to the energy attribute of sensor nodes, the coverage area of wireless sensor networks is segmented optimally to improve the coverage of wireless sensor networks and reduce the energy cost of a single node in the network, to realize the optimal networking of wireless sensor networks. The simulation results show that for the region segmentation model of wireless sensor networks constructed by this method, the quality reliability of transmitting data by network nodes is higher, the regional coverage is stronger and the energy cost is lower, compared with previous works, which effectively prolong the life cycle of wireless sensor networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basavaraju, T.G., Surekha, K.B., Mohan, K.G., et al.: An energy efficient routing protocol based on closeness factor for wireless sensor networks. Int. J. Netw. Commun. 5(2), 31–36 (2015) Basavaraju, T.G., Surekha, K.B., Mohan, K.G., et al.: An energy efficient routing protocol based on closeness factor for wireless sensor networks. Int. J. Netw. Commun. 5(2), 31–36 (2015)
2.
go back to reference Ran, R., Oh, H.: Adaptive sparse random projections for wireless sensor networks with energy harvesting constraints. EURASIP J. Wirel. Commun. Netw. 15(1), 113–118 (2015)CrossRef Ran, R., Oh, H.: Adaptive sparse random projections for wireless sensor networks with energy harvesting constraints. EURASIP J. Wirel. Commun. Netw. 15(1), 113–118 (2015)CrossRef
3.
go back to reference Zhu, Y.H., Lv, H., Li, Y., et al.: Energy conservation scheme for IEEE 802.15.4 based battery-free wireless sensor networks. In: International Conference on Networking and Network Applications, pp. 342–348. IEEE (2016) Zhu, Y.H., Lv, H., Li, Y., et al.: Energy conservation scheme for IEEE 802.15.4 based battery-free wireless sensor networks. In: International Conference on Networking and Network Applications, pp. 342–348. IEEE (2016)
4.
go back to reference Losilla, F., Garcia-Sanchez, A.J., Garcia-Sanchez, F., et al.: A comprehensive approach to WSN-based ITS applications: a survey. Sensors 11(11), 10220–10265 (2011)CrossRef Losilla, F., Garcia-Sanchez, A.J., Garcia-Sanchez, F., et al.: A comprehensive approach to WSN-based ITS applications: a survey. Sensors 11(11), 10220–10265 (2011)CrossRef
5.
go back to reference Dyo, V., Ellwood, S.A., Macdonald, D.W., et al.: WILDSENSING: design and deployment of a sustainable sensor network for wildlife monitoring. ACM Trans. Sens. Netw. 8(4), 1–33 (2012)CrossRef Dyo, V., Ellwood, S.A., Macdonald, D.W., et al.: WILDSENSING: design and deployment of a sustainable sensor network for wildlife monitoring. ACM Trans. Sens. Netw. 8(4), 1–33 (2012)CrossRef
6.
go back to reference Chefi, A., Sicard, G.: SPIHT-based image compression scheme for energy conservation over wireless vision sensor networks. IEEE International Conference on Electronics, Circuits and Systems, pp. 678–681. IEEE (2015) Chefi, A., Sicard, G.: SPIHT-based image compression scheme for energy conservation over wireless vision sensor networks. IEEE International Conference on Electronics, Circuits and Systems, pp. 678–681. IEEE (2015)
7.
go back to reference Miorandi, D., Sicari, S., Pellegrini, F.D., et al.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)CrossRef Miorandi, D., Sicari, S., Pellegrini, F.D., et al.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)CrossRef
8.
go back to reference Chong, S.K., Gaber, M.M., Krishnaswamy, S., et al.: Energy conservation in wireless sensor networks: a rule-based approach. Knowl. Inf. Syst. 28(3), 579–614 (2011)CrossRef Chong, S.K., Gaber, M.M., Krishnaswamy, S., et al.: Energy conservation in wireless sensor networks: a rule-based approach. Knowl. Inf. Syst. 28(3), 579–614 (2011)CrossRef
9.
go back to reference Oliveira, L.M., Rodrigues, J.J.: Wireless sensor networks: a survey on environmental monitoring. J. Commun. 6(2), 143–151 (2011)CrossRef Oliveira, L.M., Rodrigues, J.J.: Wireless sensor networks: a survey on environmental monitoring. J. Commun. 6(2), 143–151 (2011)CrossRef
10.
go back to reference Hackmann, G., Sun, F., Castaneda, N., et al.: A holistic approach to decentralized structural damage localization using wireless sensor networks. Comput. Commun. 36(1), 29–41 (2012)CrossRef Hackmann, G., Sun, F., Castaneda, N., et al.: A holistic approach to decentralized structural damage localization using wireless sensor networks. Comput. Commun. 36(1), 29–41 (2012)CrossRef
11.
go back to reference Arunraja, M., Malathi, V.: Collective prediction exploiting spatio temporal correlation (CoPeST) for energy efficient wireless sensor networks. KSII Trans. Internet Inf. Syst. 9(7), 2488–2511 (2015) Arunraja, M., Malathi, V.: Collective prediction exploiting spatio temporal correlation (CoPeST) for energy efficient wireless sensor networks. KSII Trans. Internet Inf. Syst. 9(7), 2488–2511 (2015)
12.
go back to reference Baidya, S.S., Baidya, A.: Energy conservation in a wireless sensor network by an efficient routing mechanism. International Conference on Communication, Information & Computing Technology, pp. 1–6. IEEE (2015) Baidya, S.S., Baidya, A.: Energy conservation in a wireless sensor network by an efficient routing mechanism. International Conference on Communication, Information & Computing Technology, pp. 1–6. IEEE (2015)
13.
go back to reference Berre, M.L., Rebai, M., Hnaien, F., et al.: A bi-objective model for wireless sensor deployment considering coverage and tracking applications. Int. J. Sens. Netw. 22(1), 47–57 (2016)CrossRef Berre, M.L., Rebai, M., Hnaien, F., et al.: A bi-objective model for wireless sensor deployment considering coverage and tracking applications. Int. J. Sens. Netw. 22(1), 47–57 (2016)CrossRef
14.
go back to reference Castaño, F., Bourreau, E., Velasco, N., et al.: Exact approaches for lifetime maximization in connectivity constrained wireless multi-role sensor networks. Eur. J. Oper. Res. 241(1), 28–38 (2015)MathSciNetCrossRef Castaño, F., Bourreau, E., Velasco, N., et al.: Exact approaches for lifetime maximization in connectivity constrained wireless multi-role sensor networks. Eur. J. Oper. Res. 241(1), 28–38 (2015)MathSciNetCrossRef
15.
go back to reference Akhlaq, M., Sheltami, T.R.: Recursive time synchronization protocol method for wireless sensor networks. Sensors Applications Symposium (SAS), 2012 IEEE, pp. 1–6. IEEE (2015) Akhlaq, M., Sheltami, T.R.: Recursive time synchronization protocol method for wireless sensor networks. Sensors Applications Symposium (SAS), 2012 IEEE, pp. 1–6. IEEE (2015)
16.
go back to reference Abo-Zahhad, M., Farrag, M., Ali, A., et al.: An energy consumption model for wireless sensor networks. International Conference on Energy Aware Computing Systems & Applications, pp. 1–4. IEEE (2015) Abo-Zahhad, M., Farrag, M., Ali, A., et al.: An energy consumption model for wireless sensor networks. International Conference on Energy Aware Computing Systems & Applications, pp. 1–4. IEEE (2015)
17.
go back to reference Xu, J., Zhong, Z., Ai, B.: Wireless powered sensor networks: collaborative energy beamforming considering sensing and circuit power consumption. IEEE Wirel. Commun. Lett. 5(4), 344–347 (2016)CrossRef Xu, J., Zhong, Z., Ai, B.: Wireless powered sensor networks: collaborative energy beamforming considering sensing and circuit power consumption. IEEE Wirel. Commun. Lett. 5(4), 344–347 (2016)CrossRef
18.
go back to reference Das, B., Bhunia, S.S., Roy, S., et al.: Multi criteria routing in wireless sensor network using weighted product model and relative rating. In: Applications and Innovations in Mobile Computing, pp. 132–136. IEEE (2015) Das, B., Bhunia, S.S., Roy, S., et al.: Multi criteria routing in wireless sensor network using weighted product model and relative rating. In: Applications and Innovations in Mobile Computing, pp. 132–136. IEEE (2015)
19.
go back to reference Xie, L., Shi, Y., Hou, Y.T., et al.: Multi-node wireless energy charging in sensor networks. IEEE/ACM Trans. Netw. 23(2), 437–450 (2015)CrossRef Xie, L., Shi, Y., Hou, Y.T., et al.: Multi-node wireless energy charging in sensor networks. IEEE/ACM Trans. Netw. 23(2), 437–450 (2015)CrossRef
20.
go back to reference White, K.A., Thulasiraman, P.: Energy efficient cross layer load balancing in tactical multigateway wireless sensor networks. In: IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, pp. 193–199. IEEE (2015) White, K.A., Thulasiraman, P.: Energy efficient cross layer load balancing in tactical multigateway wireless sensor networks. In: IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, pp. 193–199. IEEE (2015)
Metadata
Title
Region segmentation model for wireless sensor networks considering optimal energy conservation constraints
Authors
Xi Chen
Tao Wu
Publication date
03-02-2018
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 3/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-1788-9

Other articles of this Special Issue 3/2019

Cluster Computing 3/2019 Go to the issue

Premium Partner