Skip to main content
Top
Published in: Calcolo 4/2022

01-11-2022

Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation

Authors: Fan Yang, Jian-Ming Xu, Xiao-Xiao Li

Published in: Calcolo | Issue 4/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the problem we investigate is that the inverse problem of identifying the initial value for fractional pseudo-parabolic equation. This problem is ill-posed, i.e. the solution (if exists) does not depend on the measurable data. We give the estimate of conditional stability under an a-priori bound assumption for exact solution. Two regularization methods are used to solve this problem, and under an a-priori and an a-posteriori selection rule for the regularization parameter, the error estimates for these methods are obtained. Finally, several numerical examples are given to prove the effectiveness of these regularization methods.
Literature
1.
go back to reference Liu, F.W., Anh, V.V., Turner, I., Zhuang, P.: Time fractional advection–dispersion equation. J. Appl. Math. Comput. 13(1), 233–245 (2003)MathSciNetCrossRefMATH Liu, F.W., Anh, V.V., Turner, I., Zhuang, P.: Time fractional advection–dispersion equation. J. Appl. Math. Comput. 13(1), 233–245 (2003)MathSciNetCrossRefMATH
2.
go back to reference Liu, F.W., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Appl. Math. Comput. 166(1), 209–219 (2004)MathSciNetCrossRefMATH Liu, F.W., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Appl. Math. Comput. 166(1), 209–219 (2004)MathSciNetCrossRefMATH
3.
go back to reference Yuste, S.B., Katja, L.: Subdiffusion-limited reactions. Chem. Phys. 284(1–2), 169–180 (2002)CrossRef Yuste, S.B., Katja, L.: Subdiffusion-limited reactions. Chem. Phys. 284(1–2), 169–180 (2002)CrossRef
4.
go back to reference Tran, B.N., Vo, V.T., Zakia, H., Nguyen, H.C.: Stability of a class of problems for time-space fractional pseudo-parabolic equation with datum measured at terminal time. Appl. Numer. Math. 167, 308–329 (2021)MathSciNetCrossRefMATH Tran, B.N., Vo, V.T., Zakia, H., Nguyen, H.C.: Stability of a class of problems for time-space fractional pseudo-parabolic equation with datum measured at terminal time. Appl. Numer. Math. 167, 308–329 (2021)MathSciNetCrossRefMATH
5.
6.
go back to reference Barenblatt, G.I., Zheltov, Y.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. 24(5), 1286–1303 (1960)MATH Barenblatt, G.I., Zheltov, Y.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. 24(5), 1286–1303 (1960)MATH
7.
go back to reference Padrn, V.: Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans. Am. Math. Soc. 356(7), 2739–2756 (2004)MathSciNetCrossRefMATH Padrn, V.: Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans. Am. Math. Soc. 356(7), 2739–2756 (2004)MathSciNetCrossRefMATH
8.
go back to reference Rundell, W., Colton, D.L.: Determination of an unknown non-homogenous term in a linear partial differential equation from overspecified boundary data. Appl. Anal. 10(3), 231–242 (1980)CrossRefMATH Rundell, W., Colton, D.L.: Determination of an unknown non-homogenous term in a linear partial differential equation from overspecified boundary data. Appl. Anal. 10(3), 231–242 (1980)CrossRefMATH
9.
go back to reference Beshtokov, M.K.: Boundary value problems for a pseudoparabolic equation with the caputo fractional derivative. Differ. Equ. 55(7), 884–893 (2019)MathSciNetCrossRefMATH Beshtokov, M.K.: Boundary value problems for a pseudoparabolic equation with the caputo fractional derivative. Differ. Equ. 55(7), 884–893 (2019)MathSciNetCrossRefMATH
11.
go back to reference Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Math. Comput. 32(144), 491–491 (1977)MATH Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Math. Comput. 32(144), 491–491 (1977)MATH
12.
go back to reference Wei, T., Li, X.L., Li, Y.S.: An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Prob. 32(8), 085003 (2016)MathSciNetCrossRefMATH Wei, T., Li, X.L., Li, Y.S.: An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Prob. 32(8), 085003 (2016)MathSciNetCrossRefMATH
13.
go back to reference Vauhkonen, M., Vadasz, D.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging 17(2), 285–293 (1998)CrossRef Vauhkonen, M., Vadasz, D.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging 17(2), 285–293 (1998)CrossRef
14.
go back to reference Yang, F., Li, X.X., Li, D.G., Wang, L.: The simplified Tikhonov regularization method for solving a Rieszcfeller space-fractional backward diffusion problem. Math. Comput. Sci. 11(11), 91–110 (2017)MathSciNetCrossRefMATH Yang, F., Li, X.X., Li, D.G., Wang, L.: The simplified Tikhonov regularization method for solving a Rieszcfeller space-fractional backward diffusion problem. Math. Comput. Sci. 11(11), 91–110 (2017)MathSciNetCrossRefMATH
15.
go back to reference Yang, F., Guo, H.Z., Li, X.X.: The simplified Tikhonov regularization method for identifying the unknown source for the modified Helmholtz equation. Math. Probl. Eng. 2011(2), 583–601 (2011)MathSciNetMATH Yang, F., Guo, H.Z., Li, X.X.: The simplified Tikhonov regularization method for identifying the unknown source for the modified Helmholtz equation. Math. Probl. Eng. 2011(2), 583–601 (2011)MathSciNetMATH
16.
go back to reference Yang, F., Zhang, Y., Liu, X., Li, X.X.: The quasi-boundary value method for identifying the initial value of the space–time fractional diffusion equation. Acta Math. Sci. 40(3), 641–658 (2020)MathSciNetCrossRefMATH Yang, F., Zhang, Y., Liu, X., Li, X.X.: The quasi-boundary value method for identifying the initial value of the space–time fractional diffusion equation. Acta Math. Sci. 40(3), 641–658 (2020)MathSciNetCrossRefMATH
17.
go back to reference Yang, F., Wu, H.H., Li, X.X.: Three regularization methods for identifying the initial value of homogeneous anomalous secondary diffusion equation. Math. Methods Appl. Sci. 44(17), 13723–13755 (2021)MathSciNetCrossRefMATH Yang, F., Wu, H.H., Li, X.X.: Three regularization methods for identifying the initial value of homogeneous anomalous secondary diffusion equation. Math. Methods Appl. Sci. 44(17), 13723–13755 (2021)MathSciNetCrossRefMATH
18.
go back to reference Yang, F., Fu, C.L.: The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation. Appl. Math. Model. 39(5–6), 1500–1512 (2015)MathSciNetCrossRefMATH Yang, F., Fu, C.L.: The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation. Appl. Math. Model. 39(5–6), 1500–1512 (2015)MathSciNetCrossRefMATH
19.
go back to reference Qian, A., Xiong, X., Wu, Y.: On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation. J. Comput. Appl. Math. 233(8), 1969–1979 (2010)MathSciNetCrossRefMATH Qian, A., Xiong, X., Wu, Y.: On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation. J. Comput. Appl. Math. 233(8), 1969–1979 (2010)MathSciNetCrossRefMATH
20.
go back to reference Cheng, H., Feng, X.L., Fu, C.L.: A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case. Inverse Probl. Sci. Eng. 18(7), 971–982 (2010)MathSciNetCrossRefMATH Cheng, H., Feng, X.L., Fu, C.L.: A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case. Inverse Probl. Sci. Eng. 18(7), 971–982 (2010)MathSciNetCrossRefMATH
21.
go back to reference Deng, Z.L., Yang, X.M., Feng, X.L.: A mollification regularization method for a fractional-diffusion inverse heat conduction problem. Math. Probl. Eng. 2013(1), 21–37 (2013)MathSciNetMATH Deng, Z.L., Yang, X.M., Feng, X.L.: A mollification regularization method for a fractional-diffusion inverse heat conduction problem. Math. Probl. Eng. 2013(1), 21–37 (2013)MathSciNetMATH
23.
go back to reference Jin, Q., Amato, U.: A discrete scheme of landweber iteration for solving nonlinear ill-posed problems. J. Math. Anal. Appl. 253(1), 187–203 (2001)MathSciNetCrossRefMATH Jin, Q., Amato, U.: A discrete scheme of landweber iteration for solving nonlinear ill-posed problems. J. Math. Anal. Appl. 253(1), 187–203 (2001)MathSciNetCrossRefMATH
24.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
25.
26.
go back to reference Xiong, X.T., Xue, X.M., Qian, Z.: A modified iterative regularization method for ill-posed problems. Appl. Numer. Math. 122, 108–128 (2017)MathSciNetCrossRefMATH Xiong, X.T., Xue, X.M., Qian, Z.: A modified iterative regularization method for ill-posed problems. Appl. Numer. Math. 122, 108–128 (2017)MathSciNetCrossRefMATH
27.
go back to reference Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems sciencedirect. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRefMATH Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems sciencedirect. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRefMATH
28.
29.
go back to reference Schroter, T., Tautenhahn, U.: On the optimality regularization methods for solving linear ill-posed problems. Z. fur Anal. ihre Anwend. 13(4), 297–710 (1994)MathSciNetCrossRefMATH Schroter, T., Tautenhahn, U.: On the optimality regularization methods for solving linear ill-posed problems. Z. fur Anal. ihre Anwend. 13(4), 297–710 (1994)MathSciNetCrossRefMATH
30.
32.
go back to reference Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56(4), 1138–1145 (2008)MathSciNetCrossRefMATH Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56(4), 1138–1145 (2008)MathSciNetCrossRefMATH
33.
go back to reference Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)MathSciNetCrossRefMATH Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)MathSciNetCrossRefMATH
34.
go back to reference Zhang, Z.Z., Deng, W.H., Fan, H.T.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theory Method Appl. 12(2), 492–516 (2019)MathSciNetCrossRefMATH Zhang, Z.Z., Deng, W.H., Fan, H.T.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theory Method Appl. 12(2), 492–516 (2019)MathSciNetCrossRefMATH
Metadata
Title
Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation
Authors
Fan Yang
Jian-Ming Xu
Xiao-Xiao Li
Publication date
01-11-2022
Publisher
Springer International Publishing
Published in
Calcolo / Issue 4/2022
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-022-00492-3

Other articles of this Issue 4/2022

Calcolo 4/2022 Go to the issue

Premium Partner