Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Reinforcement Learning Techniques for MPPT Control of PV System Under Climatic Changes

Authors : Maximiliano Trimboli, Luis Avila, Mehdi Rahmani-Andebili

Published in: Applications of Artificial Intelligence in Planning and Operation of Smart Grids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Photovoltaic (PV) systems have become a potential solution to global problems like pollution and climate changes resulting from the excessive use of fossil fuels. This kind of system can respond to the constant increase in the electric energy demand and the need for energy supply in rural or hard-to-reach areas. However, as the energy efficiency of PV systems is low, there exists a necessity to maximize the output power so that it reaches the maximum power point (MPP). Different Maximum Power Point Tracking (MPPT) techniques can be used to increase the efficiency of PV systems. Nevertheless, climatic variations make their task difficult to achieve. This work proposes the use of reinforcement learning (RL) techniques for solving the MPPT problem of a PV system under different conditions of temperature and solar irradiance. RL techniques do not require information of a model that describes the behavior of the system with its environment. They only make use of the information of the possible states to visit and actions to take and updates a utility function according to how good the last action taken was. To validate the effectiveness of the proposed algorithms, several experiments were performed in a simulated environment. The obtained results show good performances with stable behaviors, proving to be practical for the control of photovoltaic systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.C. Hsu, C.T. Liu, W.Y. Chen, H.I. Hsieh, H.L. Wang, A reinforcement learning-based maximum power point tracking method for photovoltaic array. Int. J. Photoenergy 2015 (2015) R.C. Hsu, C.T. Liu, W.Y. Chen, H.I. Hsieh, H.L. Wang, A reinforcement learning-based maximum power point tracking method for photovoltaic array. Int. J. Photoenergy 2015 (2015)
2.
go back to reference N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review. Renew. Sust. Energ. Rev. 15(3), 1513–1524 (2011)CrossRef N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review. Renew. Sust. Energ. Rev. 15(3), 1513–1524 (2011)CrossRef
3.
go back to reference H. Islam et al., Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies 11(2), 365 (2018)CrossRef H. Islam et al., Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies 11(2), 365 (2018)CrossRef
4.
go back to reference M. Rahmani-Andebili, Dynamic and adaptive reconfiguration of electrical distribution system including renewables applying stochastic model predictive control. IET Gener. Transm. Distrib. 11(16), 3912–3921 (2017)CrossRef M. Rahmani-Andebili, Dynamic and adaptive reconfiguration of electrical distribution system including renewables applying stochastic model predictive control. IET Gener. Transm. Distrib. 11(16), 3912–3921 (2017)CrossRef
5.
go back to reference M. Rahmani-Andebili, Cooperative distributed energy scheduling in microgrids, in Power Systems, no. 9789811070006, (Springer, Singapore, 2018), pp. 235–254 M. Rahmani-Andebili, Cooperative distributed energy scheduling in microgrids, in Power Systems, no. 9789811070006, (Springer, Singapore, 2018), pp. 235–254
6.
go back to reference M. Rahmani-Andebili, Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization. Renew. Energy 113, 1462–1471 (2017)CrossRef M. Rahmani-Andebili, Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization. Renew. Energy 113, 1462–1471 (2017)CrossRef
7.
go back to reference D. Baimel, S. Tapuchi, Y. Levron, J. Belikov, Improved fractional open circuit voltage MPPT methods for PV systems. Electron 8(3), 321 (2019)CrossRef D. Baimel, S. Tapuchi, Y. Levron, J. Belikov, Improved fractional open circuit voltage MPPT methods for PV systems. Electron 8(3), 321 (2019)CrossRef
8.
go back to reference S. Hadji, J.P. Gaubert, F. Krim, Maximum Power Point Tracking (MPPT) for Photovoltaic systems using open circuit voltage and short circuit current, in 2013 3rd Int. Conf. Syst. Control. ICSC 2013, pp. 87–92, 2013 S. Hadji, J.P. Gaubert, F. Krim, Maximum Power Point Tracking (MPPT) for Photovoltaic systems using open circuit voltage and short circuit current, in 2013 3rd Int. Conf. Syst. Control. ICSC 2013, pp. 87–92, 2013
9.
go back to reference K.M. Tsang, W.L. Chan, Model based rapid maximum power point tracking for photovoltaic systems. Energy Convers. Manag. 70, 83–89 (2013)CrossRef K.M. Tsang, W.L. Chan, Model based rapid maximum power point tracking for photovoltaic systems. Energy Convers. Manag. 70, 83–89 (2013)CrossRef
10.
go back to reference P. Bhatnagar, R.K. Nema, Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. Renew. Sust. Energ. Rev. 23, 224–241 (2013)CrossRef P. Bhatnagar, R.K. Nema, Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. Renew. Sust. Energ. Rev. 23, 224–241 (2013)CrossRef
11.
go back to reference D.P. Hohm, M.E. Ropp, Comparative study of maximum power point tracking algorithms. Prog. Photovolt. Res. Appl. 11(1), 47–62 (2003)CrossRef D.P. Hohm, M.E. Ropp, Comparative study of maximum power point tracking algorithms. Prog. Photovolt. Res. Appl. 11(1), 47–62 (2003)CrossRef
12.
go back to reference P. Jain, S.N. Joshi, N. Gupta, K.G. Sharma, Analysis of MPPT techniques in grid connected PV system, in 3rd Int. Conf. Work. Recent Adv. Innov. Eng. ICRAIE 2018, July 2018 P. Jain, S.N. Joshi, N. Gupta, K.G. Sharma, Analysis of MPPT techniques in grid connected PV system, in 3rd Int. Conf. Work. Recent Adv. Innov. Eng. ICRAIE 2018, July 2018
13.
go back to reference R.I. Putri, S. Wibowo, M. Rifa’i, Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia 68, 22–30 (2015)CrossRef R.I. Putri, S. Wibowo, M. Rifa’i, Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia 68, 22–30 (2015)CrossRef
14.
go back to reference K. Ishaque, Z. Salam, G. Lauss, The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy 119, 228–236 (2014)CrossRef K. Ishaque, Z. Salam, G. Lauss, The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy 119, 228–236 (2014)CrossRef
15.
go back to reference A.I. Dounis, P. Kofinas, C. Alafodimos, D. Tseles, Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013)CrossRef A.I. Dounis, P. Kofinas, C. Alafodimos, D. Tseles, Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013)CrossRef
16.
go back to reference K. Loukil, H. Abbes, H. Abid, M. Abid, A. Toumi, Design and implementation of reconfigurable MPPT fuzzy controller for photovoltaic systems. Ain Shams Eng. J. 11(2), 319–328 (2020)CrossRef K. Loukil, H. Abbes, H. Abid, M. Abid, A. Toumi, Design and implementation of reconfigurable MPPT fuzzy controller for photovoltaic systems. Ain Shams Eng. J. 11(2), 319–328 (2020)CrossRef
17.
go back to reference A.I. Dounis, P. Kofinas, G. Papadakis, C. Alafodimos, A direct adaptive neural control for maximum power point tracking of photovoltaic system. Sol. Energy 115, 145–165 (2015)CrossRef A.I. Dounis, P. Kofinas, G. Papadakis, C. Alafodimos, A direct adaptive neural control for maximum power point tracking of photovoltaic system. Sol. Energy 115, 145–165 (2015)CrossRef
18.
go back to reference M. Arjun, J.B. Zubin, Artificial neural network based hybrid MPPT for photovoltaic modules, in 2018 Int. CET Conf. Control. Commun. Comput. IC4 2018, pp. 140–145, Nov. (2018) M. Arjun, J.B. Zubin, Artificial neural network based hybrid MPPT for photovoltaic modules, in 2018 Int. CET Conf. Control. Commun. Comput. IC4 2018, pp. 140–145, Nov. (2018)
19.
go back to reference M.A. Sasi, Fuzzy logic control of MPPT controller for PV systems, Memorial University of Newfoundland, (2017) M.A. Sasi, Fuzzy logic control of MPPT controller for PV systems, Memorial University of Newfoundland, (2017)
20.
go back to reference M. Yaichi, M.K. Fellah, A. Mammeri, A neural network based MPPT technique controller for photovoltaic pumping system. Int. J. Power Electron. Drive Syst. 4(2), 241–255 (2014) M. Yaichi, M.K. Fellah, A. Mammeri, A neural network based MPPT technique controller for photovoltaic pumping system. Int. J. Power Electron. Drive Syst. 4(2), 241–255 (2014)
21.
go back to reference C.C. Aggarwal, Neural Networks and Deep Learning (Springer International Publishing, Cham, Switzerland) (2018) C.C. Aggarwal, Neural Networks and Deep Learning (Springer International Publishing, Cham, Switzerland) (2018)
22.
go back to reference P. Kofinas, S. Doltsinis, A.I. Dounis, G.A. Vouros, A reinforcement learning approach for MPPT control method of photovoltaic sources. Renew. Energy 108, 461–473 (2017)CrossRef P. Kofinas, S. Doltsinis, A.I. Dounis, G.A. Vouros, A reinforcement learning approach for MPPT control method of photovoltaic sources. Renew. Energy 108, 461–473 (2017)CrossRef
23.
go back to reference R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction Second Edition, in Progress, Second Edi. Cambridge, MA: The MIT Press, (2014) R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction Second Edition, in Progress, Second Edi. Cambridge, MA: The MIT Press, (2014)
24.
go back to reference L. De Bernardez, R.H. Buitrago, M. Battioni, M. Cutrera, G. Risso, B. Gottlieb, MEDICIÓN DE LAS CURVAS I-V A OSCURAS DE LAS CELDAS DE UN MODULO FOTOVOLTAICO. Av. en Energías Renov. y Medio Ambient. 8, 8–12 (2004) L. De Bernardez, R.H. Buitrago, M. Battioni, M. Cutrera, G. Risso, B. Gottlieb, MEDICIÓN DE LAS CURVAS I-V A OSCURAS DE LAS CELDAS DE UN MODULO FOTOVOLTAICO. Av. en Energías Renov. y Medio Ambient. 8, 8–12 (2004)
25.
go back to reference M.G. Molina, P.E. Mercado, P.E. Wiernes, Análisis y simulación de algoritmos de control para el seguimiento del punto de máxima potencia de sistemas solares fotovoltaicos conectados a la red eléctrica. Av. en Energías Renov. y Medio Ambient. 11, 153–160 (2007) M.G. Molina, P.E. Mercado, P.E. Wiernes, Análisis y simulación de algoritmos de control para el seguimiento del punto de máxima potencia de sistemas solares fotovoltaicos conectados a la red eléctrica. Av. en Energías Renov. y Medio Ambient. 11, 153–160 (2007)
26.
go back to reference T. Ma, H. Yang, L. Lu, Solar photovoltaic system modeling and performance prediction. Renew. Sust. Energ. Rev. 36. Elsevier Ltd, 304–315 (2014)CrossRef T. Ma, H. Yang, L. Lu, Solar photovoltaic system modeling and performance prediction. Renew. Sust. Energ. Rev. 36. Elsevier Ltd, 304–315 (2014)CrossRef
27.
go back to reference G. Ciulla, V. Lo Brano, V. Di Dio, G. Cipriani, A comparison of different one-diode models for the representation of I-V characteristic of a PV cell. Renew. Sust. Energ. Rev. 32, 684–696 (2014)CrossRef G. Ciulla, V. Lo Brano, V. Di Dio, G. Cipriani, A comparison of different one-diode models for the representation of I-V characteristic of a PV cell. Renew. Sust. Energ. Rev. 32, 684–696 (2014)CrossRef
28.
go back to reference G.R. Walker, Evaluating MPPT converter topologies using a MATLAB PV model, Australas. Univ. Power Eng. Conf. AUPEC’00, 2000 G.R. Walker, Evaluating MPPT converter topologies using a MATLAB PV model, Australas. Univ. Power Eng. Conf. AUPEC’00, 2000
29.
go back to reference K.Y. Chou, S.T. Yang, C.S. Yang, Y.P. Chen, Maximum power point tracking of photovoltaic system based on reinforcement learning, in 2019 IEEE Int. Conf. Consum. Electron. - Taiwan, ICCE-TW 2019, (2019) K.Y. Chou, S.T. Yang, C.S. Yang, Y.P. Chen, Maximum power point tracking of photovoltaic system based on reinforcement learning, in 2019 IEEE Int. Conf. Consum. Electron. - Taiwan, ICCE-TW 2019, (2019)
30.
go back to reference M. Hlaili, H. Mechergui, Comparison of different MPPT algorithms with a proposed one using a power estimator for grid connected PV systems. Int. J. Photoenergy 2016 (2016) M. Hlaili, H. Mechergui, Comparison of different MPPT algorithms with a proposed one using a power estimator for grid connected PV systems. Int. J. Photoenergy 2016 (2016)
31.
32.
go back to reference L. Avila, M. De Paula, M. Trimboli, I. Carlucho, Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids. Appl. Soft Comput. 97(xxxx), 106711 (2020)CrossRef L. Avila, M. De Paula, M. Trimboli, I. Carlucho, Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids. Appl. Soft Comput. 97(xxxx), 106711 (2020)CrossRef
33.
go back to reference L. Avila, M. De Paula, I. Carlucho, C. Sanchez Reinoso, MPPT for PV systems using deep reinforcement learning algorithms. IEEE Lat. Am. Trans. 17(12), 2020–2027 (2019)CrossRef L. Avila, M. De Paula, I. Carlucho, C. Sanchez Reinoso, MPPT for PV systems using deep reinforcement learning algorithms. IEEE Lat. Am. Trans. 17(12), 2020–2027 (2019)CrossRef
34.
go back to reference B. Bendib, H. Belmili, F. Krim, A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renew. Sust. Energ. Rev. 45. Elsevier Ltd, 637–648 (2015)CrossRef B. Bendib, H. Belmili, F. Krim, A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renew. Sust. Energ. Rev. 45. Elsevier Ltd, 637–648 (2015)CrossRef
35.
go back to reference M.A.G. De Brito, L.P. Sampaio, G. Luigi, G.A.E. Melo, C.A. Canesin, Comparative analysis of MPPT techniques for PV applications, in 3rd International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2011, (2011), pp. 99–104 M.A.G. De Brito, L.P. Sampaio, G. Luigi, G.A.E. Melo, C.A. Canesin, Comparative analysis of MPPT techniques for PV applications, in 3rd International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2011, (2011), pp. 99–104
36.
go back to reference M.A. Eltawil, Z. Zhao, MPPT techniques for photovoltaic applications. Renew. Sust. Energ. Rev. 25. Elsevier Ltd, 793–813 (2013)CrossRef M.A. Eltawil, Z. Zhao, MPPT techniques for photovoltaic applications. Renew. Sust. Energ. Rev. 25. Elsevier Ltd, 793–813 (2013)CrossRef
37.
go back to reference M. Rosu-Hamzescu, S. Oprea, Microchip Technology Inc., Practical guide to implementing solar panel MPPT algorithm, 2013 M. Rosu-Hamzescu, S. Oprea, Microchip Technology Inc., Practical guide to implementing solar panel MPPT algorithm, 2013
38.
go back to reference A. Safari, S. Mekhilef, Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)CrossRef A. Safari, S. Mekhilef, Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)CrossRef
39.
go back to reference K.A. Aganah, A.W. Leedy, A constant voltage maximum power point tracking method for solar powered systems, in Proc. Annu. Southeast. Symp. Syst. Theory, (March 2011), pp. 125–130 K.A. Aganah, A.W. Leedy, A constant voltage maximum power point tracking method for solar powered systems, in Proc. Annu. Southeast. Symp. Syst. Theory, (March 2011), pp. 125–130
40.
go back to reference L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237–285 (1996) L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237–285 (1996)
41.
go back to reference X. Li, Z. Lv, S. Wang, Z. Wei, L. Wu, A reinforcement learning model based on temporal difference algorithm. IEEE Access 7, 121922–121930 (2019)CrossRef X. Li, Z. Lv, S. Wang, Z. Wei, L. Wu, A reinforcement learning model based on temporal difference algorithm. IEEE Access 7, 121922–121930 (2019)CrossRef
42.
go back to reference L. Bom, R. Henken, M. Wiering, Reinforcement learning to train Ms. Pac-Man using higher-order action-relative inputs, in IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL, (2013), pp. 156–163 L. Bom, R. Henken, M. Wiering, Reinforcement learning to train Ms. Pac-Man using higher-order action-relative inputs, in IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL, (2013), pp. 156–163
43.
go back to reference J. del R. Millán, “Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot,” Robot. Auton. Syst., vol. 15, no. 4, pp. 275–299, Oct. 1995 J. del R. Millán, “Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot,” Robot. Auton. Syst., vol. 15, no. 4, pp. 275–299, Oct. 1995
44.
go back to reference S.Y. Oh, J.H. Lee, D.H. Choi, A new reinforcement learning vehicle control architecture for vision-based road following. IEEE Trans. Veh. Technol. 49(3), 997–1005 (2000)CrossRef S.Y. Oh, J.H. Lee, D.H. Choi, A new reinforcement learning vehicle control architecture for vision-based road following. IEEE Trans. Veh. Technol. 49(3), 997–1005 (2000)CrossRef
45.
go back to reference C. Wei, Z. Zhang, W. Qiao, L. Qu, Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems. IEEE Trans. Ind. Electron. 62(10), 6360–6370 (2015)CrossRef C. Wei, Z. Zhang, W. Qiao, L. Qu, Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems. IEEE Trans. Ind. Electron. 62(10), 6360–6370 (2015)CrossRef
46.
go back to reference D.P. Bertsekas, J.N. Tsitsiklis, Introduction to probability, Cambridge, MA D.P. Bertsekas, J.N. Tsitsiklis, Introduction to probability, Cambridge, MA
47.
go back to reference S.J. Gershman, N.D. Daw, Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annu. Rev. Psychol. 68(1), 101–128 (2017)CrossRef S.J. Gershman, N.D. Daw, Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annu. Rev. Psychol. 68(1), 101–128 (2017)CrossRef
Metadata
Title
Reinforcement Learning Techniques for MPPT Control of PV System Under Climatic Changes
Authors
Maximiliano Trimboli
Luis Avila
Mehdi Rahmani-Andebili
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-94522-0_2