Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Related Work

Authors : Xiaoming Chen, Yu Wang, Huazhong Yang

Published in: Parallel Sparse Direct Solver for Integrated Circuit Simulation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Parallel circuit simulation has been a popular research topic for several decades since the invention of SPICE. Researchers have proposed a large amount of parallelization techniques for SPICE-like circuit simulation [1]. In this chapter, we will comprehensively review state-of-the-art studies on parallel circuit simulation techniques. Before that, we would like to briefly introduce classifications of these parallel techniques. Based on different points of view, parallel circuit simulation techniques can also have different classifications. From the implementation platform point of view, parallel circuit simulation techniques can be classified into software techniques and hardware techniques. Hardware techniques include field-programmable gate array (FPGA)- and graphics processing unit (GPU)-based acceleration approaches. For software techniques, from the domain of parallel processing point of view, they can be further classified into direct parallel methods, parallel circuit-domain techniques, and parallel time-domain techniques. From the algorithm level of parallel processing point of view, there are intra-algorithm and inter-algorithm parallel techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, P.: Parallel circuit simulation: a historical perspective and recent developments. Found. Trends Electron. Des. Autom. 5(4), 211–318 (2012)CrossRef Li, P.: Parallel circuit simulation: a historical perspective and recent developments. Found. Trends Electron. Des. Autom. 5(4), 211–318 (2012)CrossRef
2.
go back to reference Saleh, R.A., Gallivan, K.A., Chang, M.C., Hajj, I.N., Smart, D., Trick, T.N.: Parallel circuit simulation on supercomputers. Proc. IEEE 77(12), 1915–1931 (1989)CrossRef Saleh, R.A., Gallivan, K.A., Chang, M.C., Hajj, I.N., Smart, D., Trick, T.N.: Parallel circuit simulation on supercomputers. Proc. IEEE 77(12), 1915–1931 (1989)CrossRef
3.
go back to reference Li, X.S.: Sparse gaussian elimination on high performance computers. Ph.D. thesis, Computer Science Division, UC Berkeley, California, US (1996) Li, X.S.: Sparse gaussian elimination on high performance computers. Ph.D. thesis, Computer Science Division, UC Berkeley, California, US (1996)
4.
go back to reference Li, X.S., Demmel, J.W.: SuperLU_DIST: a scalable Distributed-Memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2), 110–140 (2003)MATHCrossRef Li, X.S., Demmel, J.W.: SuperLU_DIST: a scalable Distributed-Memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2), 110–140 (2003)MATHCrossRef
5.
6.
go back to reference Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)MathSciNetMATHCrossRef Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)MathSciNetMATHCrossRef
7.
go back to reference Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Anal. Appl. 20(4), 915–952 (1999)MathSciNetMATHCrossRef Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Anal. Appl. 20(4), 915–952 (1999)MathSciNetMATHCrossRef
8.
go back to reference Davis, T.A.: Algorithm 832: UMFPACK V4.3-An Unsymmetric-Pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetMATHCrossRef Davis, T.A.: Algorithm 832: UMFPACK V4.3-An Unsymmetric-Pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetMATHCrossRef
9.
go back to reference Davis, T.A., Palamadai Natarajan, E.: Algorithm 907: KLU, A direct sparse solver for circuit simulation problems. ACM Trans. Math. Softw. 37(3), 36:1–36:17 (2010) Davis, T.A., Palamadai Natarajan, E.: Algorithm 907: KLU, A direct sparse solver for circuit simulation problems. ACM Trans. Math. Softw. 37(3), 36:1–36:17 (2010)
10.
go back to reference Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)MATHCrossRef Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)MATHCrossRef
11.
go back to reference Schenk, O., Gärtner, K., Fichtner, W.: Efficient sparse LU factorization with Left-Right looking strategy on shared memory multiprocessors. BIT Numer. Math. 40(1), 158–176 (2000)MathSciNetMATHCrossRef Schenk, O., Gärtner, K., Fichtner, W.: Efficient sparse LU factorization with Left-Right looking strategy on shared memory multiprocessors. BIT Numer. Math. 40(1), 158–176 (2000)MathSciNetMATHCrossRef
12.
go back to reference Schenk, O., Gärtner, K.: Two-Level dynamic scheduling in PARDISO: improved scalability on shared memory multiprocessing systems. Parallel Comput. 28(2), 187–197 (2002)MATHCrossRef Schenk, O., Gärtner, K.: Two-Level dynamic scheduling in PARDISO: improved scalability on shared memory multiprocessing systems. Parallel Comput. 28(2), 187–197 (2002)MATHCrossRef
13.
go back to reference Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)MathSciNetMATHCrossRef Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)MathSciNetMATHCrossRef
14.
go back to reference Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)MathSciNetCrossRef Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)MathSciNetCrossRef
15.
go back to reference Amestoy, P., Duff, I., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)MATHCrossRef Amestoy, P., Duff, I., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)MATHCrossRef
16.
go back to reference Gupta, A., Joshi, M., Kumar, V.: WSMP: A High-Performance Shared- and Distributed-Memory parallel sparse linear solver. Technical report, IBM T. J. Watson Research Center (2001) Gupta, A., Joshi, M., Kumar, V.: WSMP: A High-Performance Shared- and Distributed-Memory parallel sparse linear solver. Technical report, IBM T. J. Watson Research Center (2001)
17.
go back to reference Dongarra, J.J., Cruz, J.D., Hammerling, S., Duff, I.S.: Algorithm 679: a set of level 3 basic linear algebra subprograms: model implementation and test programs. ACM Trans. Math. Softw. 16(1), 18–28 (1990)MATHCrossRef Dongarra, J.J., Cruz, J.D., Hammerling, S., Duff, I.S.: Algorithm 679: a set of level 3 basic linear algebra subprograms: model implementation and test programs. ACM Trans. Math. Softw. 16(1), 18–28 (1990)MATHCrossRef
18.
go back to reference Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)MATHCrossRef Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)MATHCrossRef
20.
go back to reference Gilbert, J.R., Peierls, T.: Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. Sci. Statist. Comput. 9(5), 862–874 (1988)MathSciNetMATHCrossRef Gilbert, J.R., Peierls, T.: Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. Sci. Statist. Comput. 9(5), 862–874 (1988)MathSciNetMATHCrossRef
21.
go back to reference Gould, N.I.M., Scott, J.A., Hu, Y.: A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33(2), 1–32 (2007)MathSciNetCrossRef Gould, N.I.M., Scott, J.A., Hu, Y.: A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33(2), 1–32 (2007)MathSciNetCrossRef
23.
go back to reference Zitney, S., Mallya, J., Davis, T., therr, M.S.: Multifrontal vs Frontal techniques for chemical process simulation on supercomputers. Comput. Chem. Eng. 20(6-7), 641–646 (1996) Zitney, S., Mallya, J., Davis, T., therr, M.S.: Multifrontal vs Frontal techniques for chemical process simulation on supercomputers. Comput. Chem. Eng. 20(6-7), 641–646 (1996)
24.
go back to reference Fischer, M., Dirks, H.: Multigranular parallel algorithms for solving linear equations in VLSI circuit simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23(5), 728–736 (2004)CrossRef Fischer, M., Dirks, H.: Multigranular parallel algorithms for solving linear equations in VLSI circuit simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23(5), 728–736 (2004)CrossRef
25.
go back to reference Davis, T.A.: Direct Methods for Sparse Linear Systems, 1st edn. Society for Industrial and Applied Mathematics, US (2006)MATHCrossRef Davis, T.A.: Direct Methods for Sparse Linear Systems, 1st edn. Society for Industrial and Applied Mathematics, US (2006)MATHCrossRef
26.
go back to reference Rajamanickam, S., Boman, E., Heroux, M.: ShyLU: A Hybrid-Hybrid solver for multicore platforms. In: 2012 IEEE 26th International Parallel Distributed Processing Symposium (IPDPS), pp. 631–643 (2012) Rajamanickam, S., Boman, E., Heroux, M.: ShyLU: A Hybrid-Hybrid solver for multicore platforms. In: 2012 IEEE 26th International Parallel Distributed Processing Symposium (IPDPS), pp. 631–643 (2012)
27.
go back to reference Zhang, F.: The Schur Complement and Its Applications. Numerical Methods and Algorithms. Springer, Berlin, Germany (2005)CrossRef Zhang, F.: The Schur Complement and Its Applications. Numerical Methods and Algorithms. Springer, Berlin, Germany (2005)CrossRef
28.
go back to reference Thornquist, H.K., Rajamanickam, S.: A hybrid approach for parallel Transistor-Level Full-Chip circuit simulation. In: International Meeting on High-Performance Computing for Computational Science, pp. 102–111 (2015) Thornquist, H.K., Rajamanickam, S.: A hybrid approach for parallel Transistor-Level Full-Chip circuit simulation. In: International Meeting on High-Performance Computing for Computational Science, pp. 102–111 (2015)
29.
go back to reference MehriDehnavi, M., El-Kurdi, Y., Demmel, J., Giannacopoulos, D.: Communication-Avoiding Krylov techniques on graphic processing units. IEEE Trans. Magn. 49(5), 1749–1752 (2013)CrossRef MehriDehnavi, M., El-Kurdi, Y., Demmel, J., Giannacopoulos, D.: Communication-Avoiding Krylov techniques on graphic processing units. IEEE Trans. Magn. 49(5), 1749–1752 (2013)CrossRef
30.
go back to reference Fowers, J., Ovtcharov, K., Strauss, K., Chung, E.S., Stitt, G.: A High memory bandwidth FPGA accelerator for sparse Matrix-Vector multiplication. In: 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 36–43 (2014) Fowers, J., Ovtcharov, K., Strauss, K., Chung, E.S., Stitt, G.: A High memory bandwidth FPGA accelerator for sparse Matrix-Vector multiplication. In: 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 36–43 (2014)
31.
go back to reference Tang, W.T., Tan, W.J., Ray, R., Wong, Y.W., Chen, W., Kuo, S.H., Goh, R.S.M., Turner, S.J., Wong, W.F.: Accelerating sparse matrix-vector multiplication on GPUs using Bit-Representation-Optimized schemes. In: 2013 SC—International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–12 (2013) Tang, W.T., Tan, W.J., Ray, R., Wong, Y.W., Chen, W., Kuo, S.H., Goh, R.S.M., Turner, S.J., Wong, W.F.: Accelerating sparse matrix-vector multiplication on GPUs using Bit-Representation-Optimized schemes. In: 2013 SC—International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–12 (2013)
32.
go back to reference Greathouse, J.L., Daga, M.: Efficient sparse Matrix-Vector multiplication on GPUs using the CSR storage format. In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 769–780 (2014) Greathouse, J.L., Daga, M.: Efficient sparse Matrix-Vector multiplication on GPUs using the CSR storage format. In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 769–780 (2014)
33.
go back to reference Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarath, S., Sadayappan, P.: Fast sparse Matrix-Vector multiplication on GPUs for graph applications. In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 781–792 (2014) Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarath, S., Sadayappan, P.: Fast sparse Matrix-Vector multiplication on GPUs for graph applications. In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 781–792 (2014)
34.
go back to reference Grigoras, P., Burovskiy, P., Hung, E., Luk, W.: Accelerating SpMV on FPGAs by compressing nonzero values. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 64–67 (2015) Grigoras, P., Burovskiy, P., Hung, E., Luk, W.: Accelerating SpMV on FPGAs by compressing nonzero values. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 64–67 (2015)
35.
go back to reference Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Boston, US (2004) Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Boston, US (2004)
36.
go back to reference Basermann, A., Jaekel, U., Hachiya, K.: Preconditioning parallel sparse iterative solvers for circuit simulation. In: Proceedings of the 8th SIAM Proceedings on Applied Linear Algebra, Williamsburg VA (2003) Basermann, A., Jaekel, U., Hachiya, K.: Preconditioning parallel sparse iterative solvers for circuit simulation. In: Proceedings of the 8th SIAM Proceedings on Applied Linear Algebra, Williamsburg VA (2003)
37.
go back to reference Suda, R.: New iterative linear solvers for parallel circuit simulation. Ph.D. thesis, University of Tokio (1996) Suda, R.: New iterative linear solvers for parallel circuit simulation. Ph.D. thesis, University of Tokio (1996)
38.
go back to reference Basermann, A., Jaekel, U., Nordhausen, M., Hachiya, K.: Parallel iterative solvers for sparse linear systems in circuit simulation. Future Gener. Comput. Syst. 21(8), 1275–1284 (2005)CrossRef Basermann, A., Jaekel, U., Nordhausen, M., Hachiya, K.: Parallel iterative solvers for sparse linear systems in circuit simulation. Future Gener. Comput. Syst. 21(8), 1275–1284 (2005)CrossRef
39.
go back to reference Li, Z., Shi, C.J.R.: An efficiently preconditioned GMRES method for fast Parasitic-Sensitive Deep-Submicron VLSI circuit simulation. In: Design, Automation and Test in Europe, Vol. 2, pp. 752–757 (2005) Li, Z., Shi, C.J.R.: An efficiently preconditioned GMRES method for fast Parasitic-Sensitive Deep-Submicron VLSI circuit simulation. In: Design, Automation and Test in Europe, Vol. 2, pp. 752–757 (2005)
40.
go back to reference Li, Z., Shi, C.J.R.: A Quasi-Newton preconditioned Newton-Krylov method for robust and efficient Time-Domain simulation of integrated circuits with strong parasitic couplings. Asia S. Pac. Conf. Des. Autom. 2006, 402–407 (2006) Li, Z., Shi, C.J.R.: A Quasi-Newton preconditioned Newton-Krylov method for robust and efficient Time-Domain simulation of integrated circuits with strong parasitic couplings. Asia S. Pac. Conf. Des. Autom. 2006, 402–407 (2006)
41.
go back to reference Li, Z., Shi, C.J.R.: A Quasi-Newton preconditioned newton—Krylov method for robust and efficient Time-Domain simulation of integrated circuits with strong parasitic couplings. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(12), 2868–2881 (2006)CrossRef Li, Z., Shi, C.J.R.: A Quasi-Newton preconditioned newton—Krylov method for robust and efficient Time-Domain simulation of integrated circuits with strong parasitic couplings. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(12), 2868–2881 (2006)CrossRef
42.
go back to reference Zhao, X., Han, L., Feng, Z.: A Performance-Guided graph sparsification approach to scalable and robust SPICE-Accurate integrated circuit simulations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(10), 1639–1651 (2015)CrossRef Zhao, X., Han, L., Feng, Z.: A Performance-Guided graph sparsification approach to scalable and robust SPICE-Accurate integrated circuit simulations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(10), 1639–1651 (2015)CrossRef
43.
go back to reference Zhao, X., Feng, Z.: GPSCP: A General-Purpose Support-Circuit preconditioning approach to Large-Scale SPICE-Accurate nonlinear circuit simulations. In: 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 429–435 (2012) Zhao, X., Feng, Z.: GPSCP: A General-Purpose Support-Circuit preconditioning approach to Large-Scale SPICE-Accurate nonlinear circuit simulations. In: 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 429–435 (2012)
44.
go back to reference Zhao, X., Feng, Z.: Towards efficient SPICE-Accurate nonlinear circuit simulation with On-the-Fly Support-Circuit preconditioners. In: Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 1119–1124 (2012) Zhao, X., Feng, Z.: Towards efficient SPICE-Accurate nonlinear circuit simulation with On-the-Fly Support-Circuit preconditioners. In: Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 1119–1124 (2012)
45.
go back to reference Bern, M., Gilbert, J.R., Hendrickson, B., Nguyen, N., Toledo, S.: Support-Graph preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 930–951 (2006)MathSciNetMATHCrossRef Bern, M., Gilbert, J.R., Hendrickson, B., Nguyen, N., Toledo, S.: Support-Graph preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 930–951 (2006)MathSciNetMATHCrossRef
46.
go back to reference Thornquist, H.K., Keiter, E.R., Hoekstra, R.J., Day, D.M., Boman, E.G.: A parallel preconditioning strategy for efficient Transistor-Level circuit simulation. In: 2009 IEEE/ACM International Conference on Computer-Aided Design—Digest of Technical Papers, pp. 410–417 (2009) Thornquist, H.K., Keiter, E.R., Hoekstra, R.J., Day, D.M., Boman, E.G.: A parallel preconditioning strategy for efficient Transistor-Level circuit simulation. In: 2009 IEEE/ACM International Conference on Computer-Aided Design—Digest of Technical Papers, pp. 410–417 (2009)
47.
go back to reference Chan, K.W.: Parallel algorithms for direct solution of large sparse power system matrix equations. IEE Proc.—Gener. Transm. Distrib. 148(6), 615–622 (2001)CrossRef Chan, K.W.: Parallel algorithms for direct solution of large sparse power system matrix equations. IEE Proc.—Gener. Transm. Distrib. 148(6), 615–622 (2001)CrossRef
48.
go back to reference Zecevic, A.I., Siljak, D.D.: Balanced decompositions of sparse systems for multilevel parallel processing. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41(3), 220–233 (1994)MathSciNetCrossRef Zecevic, A.I., Siljak, D.D.: Balanced decompositions of sparse systems for multilevel parallel processing. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41(3), 220–233 (1994)MathSciNetCrossRef
49.
go back to reference Koester, D.P., Ranka, S., Fox, G.C.: Parallel Block-Diagonal-Bordered sparse linear solvers for electrical power system applications. In: Proceedings of the Scalable Parallel Libraries Conference, 1993, pp. 195–203 (1993) Koester, D.P., Ranka, S., Fox, G.C.: Parallel Block-Diagonal-Bordered sparse linear solvers for electrical power system applications. In: Proceedings of the Scalable Parallel Libraries Conference, 1993, pp. 195–203 (1993)
50.
go back to reference Paul, D., Nakhla, M.S., Achar, R., Nakhla, N.M.: Parallel circuit simulation via binary link formulations (PvB). IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 768–782 (2013)CrossRef Paul, D., Nakhla, M.S., Achar, R., Nakhla, N.M.: Parallel circuit simulation via binary link formulations (PvB). IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 768–782 (2013)CrossRef
51.
go back to reference Hu, Y.F., Maguire, K.C.F., Blake, R.J.: Ordering unsymmetric matrices into bordered block diagonal form for parallel processing. In: Euro-Par’99 Parallel Processing: 5th International Euro-Par Conference Toulouse, pp. 295–302 (1999) Hu, Y.F., Maguire, K.C.F., Blake, R.J.: Ordering unsymmetric matrices into bordered block diagonal form for parallel processing. In: Euro-Par’99 Parallel Processing: 5th International Euro-Par Conference Toulouse, pp. 295–302 (1999)
52.
go back to reference Aykanat, C., Pinar, A., Çatalyürek, U.V.: Permuting sparse rectangular matrices into Block-Diagonal form. SIAM J. Sci. Comput. 25(6), 1860–1879 (2004)MathSciNetMATHCrossRef Aykanat, C., Pinar, A., Çatalyürek, U.V.: Permuting sparse rectangular matrices into Block-Diagonal form. SIAM J. Sci. Comput. 25(6), 1860–1879 (2004)MathSciNetMATHCrossRef
53.
go back to reference Duff, I.S., Scott, J.A.: Stabilized bordered block diagonal forms for parallel sparse solvers. Parallel Comput. 31(3–4), 275–289 (2005)MathSciNetCrossRef Duff, I.S., Scott, J.A.: Stabilized bordered block diagonal forms for parallel sparse solvers. Parallel Comput. 31(3–4), 275–289 (2005)MathSciNetCrossRef
54.
go back to reference Frohlich, N., Riess, B.M., Wever, U.A., Zheng, Q.: A new approach for parallel simulation of VLSI circuits on a transistor level. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45(6), 601–613 (1998)CrossRef Frohlich, N., Riess, B.M., Wever, U.A., Zheng, Q.: A new approach for parallel simulation of VLSI circuits on a transistor level. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45(6), 601–613 (1998)CrossRef
55.
go back to reference Honkala, M., Roos, J., Valtonen, M.: New multilevel Newton-Raphson method for parallel circuit simulation. Proc. Eur. Conf. Circuit Theory Des. 1, 113–116 (2001) Honkala, M., Roos, J., Valtonen, M.: New multilevel Newton-Raphson method for parallel circuit simulation. Proc. Eur. Conf. Circuit Theory Des. 1, 113–116 (2001)
56.
go back to reference Zhu, Z., Peng, H., Cheng, C.K., Rouz, K., Borah, M., Kuh, E.S.: Two-Stage Newton-Raphson method for Transistor-Level simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 26(5), 881–895 (2007)CrossRef Zhu, Z., Peng, H., Cheng, C.K., Rouz, K., Borah, M., Kuh, E.S.: Two-Stage Newton-Raphson method for Transistor-Level simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 26(5), 881–895 (2007)CrossRef
57.
go back to reference Rabbat, N., Sangiovanni-Vincentelli, A., Hsieh, H.: A multilevel newton algorithm with macromodeling and latency for the analysis of Large-Scale nonlinear circuits in the time domain. IEEE Trans. Circuits Syst. 26(9), 733–741 (1979)MathSciNetMATHCrossRef Rabbat, N., Sangiovanni-Vincentelli, A., Hsieh, H.: A multilevel newton algorithm with macromodeling and latency for the analysis of Large-Scale nonlinear circuits in the time domain. IEEE Trans. Circuits Syst. 26(9), 733–741 (1979)MathSciNetMATHCrossRef
58.
go back to reference Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, 1st edn. Cambridge University Press (2004) Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, 1st edn. Cambridge University Press (2004)
59.
go back to reference Peng, H., Cheng, C.K.: Parallel transistor level circuit simulation using domain decomposition methods. In: 2009 Asia and South Pacific Design Automation Conference, pp. 397–402 (2009) Peng, H., Cheng, C.K.: Parallel transistor level circuit simulation using domain decomposition methods. In: 2009 Asia and South Pacific Design Automation Conference, pp. 397–402 (2009)
60.
go back to reference Peng, H., Cheng, C.K.: Parallel transistor level full-Chip circuit simulation. In: 2009 Design, Automation Test in Europe Conference Exhibition, pp. 304–307 (2009) Peng, H., Cheng, C.K.: Parallel transistor level full-Chip circuit simulation. In: 2009 Design, Automation Test in Europe Conference Exhibition, pp. 304–307 (2009)
61.
go back to reference Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for Time-Domain analysis of large scale integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1(3), 131–145 (1982)CrossRef Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for Time-Domain analysis of large scale integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1(3), 131–145 (1982)CrossRef
62.
go back to reference Achar, R., Nakhla, M.S., Dhindsa, H.S., Sridhar, A.R., Paul, D., Nakhla, N.M.: Parallel and scalable transient simulator for power grids via waveform relaxation (PTS-PWR). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(2), 319–332 (2011)CrossRef Achar, R., Nakhla, M.S., Dhindsa, H.S., Sridhar, A.R., Paul, D., Nakhla, N.M.: Parallel and scalable transient simulator for power grids via waveform relaxation (PTS-PWR). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(2), 319–332 (2011)CrossRef
63.
go back to reference Odent, P., Claesen, L., Man, H.D.: A combined waveform Relaxation-Waveform relaxation newton algorithm for efficient parallel circuit simulation. In: Proceedings of the European Design Automation Conference, 1990, EDAC, pp. 244–248 (1990) Odent, P., Claesen, L., Man, H.D.: A combined waveform Relaxation-Waveform relaxation newton algorithm for efficient parallel circuit simulation. In: Proceedings of the European Design Automation Conference, 1990, EDAC, pp. 244–248 (1990)
64.
go back to reference Rissiek, W., John, W.: A dynamic scheduling algorithm for the simulation of MOS and Bipolar circuits using waveform relaxation. In: Design Automation Conference, 1992, EURO-VHDL ’92, EURO-DAC ’92. European, pp. 421–426 (1992) Rissiek, W., John, W.: A dynamic scheduling algorithm for the simulation of MOS and Bipolar circuits using waveform relaxation. In: Design Automation Conference, 1992, EURO-VHDL ’92, EURO-DAC ’92. European, pp. 421–426 (1992)
65.
go back to reference Saviz, P., Wing, O.: PYRAMID-A hierarchical waveform Relaxation-Based circuit simulation program. In: IEEE International Conference on Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers, pp. 442–445 (1988) Saviz, P., Wing, O.: PYRAMID-A hierarchical waveform Relaxation-Based circuit simulation program. In: IEEE International Conference on Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers, pp. 442–445 (1988)
66.
go back to reference Erdman, D.J., Rose, D.J.: A newton waveform relaxation algorithm for circuit simulation. In: 1989 IEEE International Conference on Computer-Aided Design, 1989. ICCAD-89. Digest of Technical Papers, pp. 404–407 (1989) Erdman, D.J., Rose, D.J.: A newton waveform relaxation algorithm for circuit simulation. In: 1989 IEEE International Conference on Computer-Aided Design, 1989. ICCAD-89. Digest of Technical Papers, pp. 404–407 (1989)
67.
go back to reference Saviz, P., Wing, O.: Circuit simulation by hierarchical waveform relaxation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 12(6), 845–860 (1993)CrossRef Saviz, P., Wing, O.: Circuit simulation by hierarchical waveform relaxation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 12(6), 845–860 (1993)CrossRef
68.
go back to reference Fang, W., Mokari, M.E., Smart, D.: Robust VLSI circuit simulation techniques based on overlapped waveform relaxation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14(4), 510–518 (1995)CrossRef Fang, W., Mokari, M.E., Smart, D.: Robust VLSI circuit simulation techniques based on overlapped waveform relaxation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14(4), 510–518 (1995)CrossRef
69.
go back to reference Gristede, G.D., Ruehli, A.E., Zukowski, C.A.: Convergence properties of waveform relaxation circuit simulation methods. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45(7), 726–738 (1998) Gristede, G.D., Ruehli, A.E., Zukowski, C.A.: Convergence properties of waveform relaxation circuit simulation methods. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 45(7), 726–738 (1998)
70.
go back to reference Dong, W., Li, P., Ye, X.: WavePipe: parallel transient simulation of analog and digital circuits on Multi-Core Shared-Memory machines. In: Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pp. 238–243 (2008) Dong, W., Li, P., Ye, X.: WavePipe: parallel transient simulation of analog and digital circuits on Multi-Core Shared-Memory machines. In: Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pp. 238–243 (2008)
71.
go back to reference Ye, X., Dong, W., Li, P., Nassif, S.: MAPS: Multi-Algorithm parallel circuit simulation. In: 2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 73–78 (2008) Ye, X., Dong, W., Li, P., Nassif, S.: MAPS: Multi-Algorithm parallel circuit simulation. In: 2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 73–78 (2008)
72.
go back to reference Ye, X., Li, P.: Parallel program performance modeling for runtime optimization of Multi-Algorithm circuit simulation. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 561–566 (2010) Ye, X., Li, P.: Parallel program performance modeling for runtime optimization of Multi-Algorithm circuit simulation. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 561–566 (2010)
73.
go back to reference Ye, X., Li, P.: On-the-fly runtime adaptation for efficient execution of parallel Multi-Algorithm circuit simulation. In: 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 298–304 (2010) Ye, X., Li, P.: On-the-fly runtime adaptation for efficient execution of parallel Multi-Algorithm circuit simulation. In: 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 298–304 (2010)
74.
go back to reference Ye, X., Dong, W., Li, P., Nassif, S.: Hierarchical multialgorithm parallel circuit simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(1), 45–58 (2011)CrossRef Ye, X., Dong, W., Li, P., Nassif, S.: Hierarchical multialgorithm parallel circuit simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(1), 45–58 (2011)CrossRef
75.
go back to reference Ye, Z., Wu, B., Han, S., Li, Y.: Time-Domain segmentation based massively parallel simulation for ADCs. In: Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, pp. 1–6 (2013) Ye, Z., Wu, B., Han, S., Li, Y.: Time-Domain segmentation based massively parallel simulation for ADCs. In: Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, pp. 1–6 (2013)
76.
go back to reference Chua, L.O., Lin, P.Y.: Computer-Aided analysis of electronic circuits: algorithms and computational techniques, 1st edn. Prentice Hall Professional Technical Reference (1975) Chua, L.O., Lin, P.Y.: Computer-Aided analysis of electronic circuits: algorithms and computational techniques, 1st edn. Prentice Hall Professional Technical Reference (1975)
77.
go back to reference Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis, 2nd edn. Cambridge University Press, England (2003)MATHCrossRef Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis, 2nd edn. Cambridge University Press, England (2003)MATHCrossRef
79.
80.
go back to reference Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)MathSciNetMATHCrossRef Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)MathSciNetMATHCrossRef
81.
go back to reference Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)MathSciNetMATHCrossRef Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)MathSciNetMATHCrossRef
82.
go back to reference Zhuang, H., Wang, X., Chen, Q., Chen, P., Cheng, C.K.: From circuit theory, simulation to SPICE_Diego: a matrix exponential approach for Time-Domain analysis of Large-Scale circuits. IEEE Circuits Syst. Mag. 16(2), 16–34 (2016)CrossRef Zhuang, H., Wang, X., Chen, Q., Chen, P., Cheng, C.K.: From circuit theory, simulation to SPICE_Diego: a matrix exponential approach for Time-Domain analysis of Large-Scale circuits. IEEE Circuits Syst. Mag. 16(2), 16–34 (2016)CrossRef
83.
go back to reference Zhuang, H., Yu, W., Kang, I., Wang, X., Cheng, C.K.: An algorithmic framework for efficient Large-Scale circuit simulation using exponential integrators. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2015) Zhuang, H., Yu, W., Kang, I., Wang, X., Cheng, C.K.: An algorithmic framework for efficient Large-Scale circuit simulation using exponential integrators. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2015)
84.
go back to reference Weng, S.H., Chen, Q., Wong, N., Cheng, C.K.: Circuit simulation via matrix exponential method for stiffness handling and parallel processing. In: 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 407–414 (2012) Weng, S.H., Chen, Q., Wong, N., Cheng, C.K.: Circuit simulation via matrix exponential method for stiffness handling and parallel processing. In: 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 407–414 (2012)
85.
go back to reference Chen, Q., Zhao, W., Wong, N.: Efficient matrix exponential method based on extended Krylov subspace for transient simulation of Large-Scale linear circuits. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 262–266 (2014) Chen, Q., Zhao, W., Wong, N.: Efficient matrix exponential method based on extended Krylov subspace for transient simulation of Large-Scale linear circuits. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 262–266 (2014)
86.
go back to reference Zhuang, H., Weng, S.H., Lin, J.H., Cheng, C.K.: MATEX: A distributed framework for transient simulation of power distribution networks. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2014) Zhuang, H., Weng, S.H., Lin, J.H., Cheng, C.K.: MATEX: A distributed framework for transient simulation of power distribution networks. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2014)
88.
go back to reference Khronos OpenCL Working Group: The OpenCL Specification v1.1 (2010) Khronos OpenCL Working Group: The OpenCL Specification v1.1 (2010)
89.
go back to reference Gulati, K., Croix, J.F., Khatri, S.P., Shastry, R.: Fast circuit simulation on graphics processing units. In: 2009 Asia and South Pacific Design Automation Conference, pp. 403–408 (2009) Gulati, K., Croix, J.F., Khatri, S.P., Shastry, R.: Fast circuit simulation on graphics processing units. In: 2009 Asia and South Pacific Design Automation Conference, pp. 403–408 (2009)
90.
go back to reference Poore, R.E.: GPU-Accelerated Time-Domain circuit simulation. In: 2009 IEEE Custom Integrated Circuits Conference, pp. 629–632 (2009) Poore, R.E.: GPU-Accelerated Time-Domain circuit simulation. In: 2009 IEEE Custom Integrated Circuits Conference, pp. 629–632 (2009)
91.
go back to reference Bayoumi, A.M., Hanafy, Y.Y.: Massive parallelization of SPICE device model evaluation on GPU-based SIMD architectures. In: Proceedings of the 1st International Forum on Next-generation Multicore/Manycore Technologies, pp. 12:1–12:5 (2008) Bayoumi, A.M., Hanafy, Y.Y.: Massive parallelization of SPICE device model evaluation on GPU-based SIMD architectures. In: Proceedings of the 1st International Forum on Next-generation Multicore/Manycore Technologies, pp. 12:1–12:5 (2008)
93.
go back to reference Christen, M., Schenk, O., Burkhart, H.: General-Purpose sparse matrix building blocks Using the NVIDIA CUDA technology platform. In: First Workshop on General Purpose Processing on Graphics Processing Units. Citeseer (2007) Christen, M., Schenk, O., Burkhart, H.: General-Purpose sparse matrix building blocks Using the NVIDIA CUDA technology platform. In: First Workshop on General Purpose Processing on Graphics Processing Units. Citeseer (2007)
94.
go back to reference Krawezik, G.P., Poole, G.: Accelerating the ANSYS direct sparse solver with GPUs. In: 2009 Symposium on Application Accelerators in High Performance Computing (SAAHPC’09) (2009) Krawezik, G.P., Poole, G.: Accelerating the ANSYS direct sparse solver with GPUs. In: 2009 Symposium on Application Accelerators in High Performance Computing (SAAHPC’09) (2009)
95.
go back to reference Yu, C.D., Wang, W., Pierce, D.: A CPU-GPU hybrid approach for the unsymmetric multifrontal method. Parallel Comput. 37(12), 759–770 (2011)CrossRef Yu, C.D., Wang, W., Pierce, D.: A CPU-GPU hybrid approach for the unsymmetric multifrontal method. Parallel Comput. 37(12), 759–770 (2011)CrossRef
96.
go back to reference George, T., Saxena, V., Gupta, A., Singh, A., Choudhury, A.: Multifrontal factorization of sparse SPD matrices on GPUs. In: 2011 IEEE International Parallel Distributed Processing Symposium (IPDPS), pp. 372–383 (2011) George, T., Saxena, V., Gupta, A., Singh, A., Choudhury, A.: Multifrontal factorization of sparse SPD matrices on GPUs. In: 2011 IEEE International Parallel Distributed Processing Symposium (IPDPS), pp. 372–383 (2011)
97.
go back to reference Lucas, R.F., Wagenbreth, G., Tran, J.J., Davis, D.M.: Multifrontal Sparse Matrix Factorization on Graphics Processing Units. Technical report. Information Sciences Institute, University of Southern California (2012) Lucas, R.F., Wagenbreth, G., Tran, J.J., Davis, D.M.: Multifrontal Sparse Matrix Factorization on Graphics Processing Units. Technical report. Information Sciences Institute, University of Southern California (2012)
98.
go back to reference Lucas, R.F., Wagenbreth, G., Davis, D.M., Grimes, R.: Multifrontal computations on GPUs and their Multi-Core Hosts. In: Proceedings of the 9th International Conference on High Performance Computing for Computational Science, pp. 71–82 (2011) Lucas, R.F., Wagenbreth, G., Davis, D.M., Grimes, R.: Multifrontal computations on GPUs and their Multi-Core Hosts. In: Proceedings of the 9th International Conference on High Performance Computing for Computational Science, pp. 71–82 (2011)
99.
go back to reference Kim, K., Eijkhout, V.: Scheduling a parallel sparse direct solver to multiple GPUs. In: 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops Ph.D. Forum (IPDPSW), pp. 1401–1408 (2013) Kim, K., Eijkhout, V.: Scheduling a parallel sparse direct solver to multiple GPUs. In: 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops Ph.D. Forum (IPDPSW), pp. 1401–1408 (2013)
100.
go back to reference Hogg, J.D., Ovtchinnikov, E., Scott, J.A.: A sparse symmetric indefinite direct solver for GPU architectures. ACM Trans. Math. Softw. 42(1), 1:1–1:25 (2016) Hogg, J.D., Ovtchinnikov, E., Scott, J.A.: A sparse symmetric indefinite direct solver for GPU architectures. ACM Trans. Math. Softw. 42(1), 1:1–1:25 (2016)
101.
go back to reference Sao, P., Vuduc, R., Li, X.S.: A distributed CPU-GPU sparse direct solver. In: Euro-Par 2014 Parallel Processing: 20th International Conference, pp. 487–498 (2014) Sao, P., Vuduc, R., Li, X.S.: A distributed CPU-GPU sparse direct solver. In: Euro-Par 2014 Parallel Processing: 20th International Conference, pp. 487–498 (2014)
102.
go back to reference Ren, L., Chen, X., Wang, Y., Zhang, C., Yang, H.: Sparse LU factorization for parallel circuit simulation on GPU. In: Proceedings of the 49th Annual Design Automation Conference. DAC ’12, pp. 1125–1130. ACM, New York, NY, USA (2012) Ren, L., Chen, X., Wang, Y., Zhang, C., Yang, H.: Sparse LU factorization for parallel circuit simulation on GPU. In: Proceedings of the 49th Annual Design Automation Conference. DAC ’12, pp. 1125–1130. ACM, New York, NY, USA (2012)
103.
go back to reference Chen, X., Ren, L., Wang, Y., Yang, H.: GPU-Accelerated sparse LU factorization for circuit simulation with performance modeling. IEEE Trans. Parallel Distrib. Syst. 26(3), 786–795 (2015)CrossRef Chen, X., Ren, L., Wang, Y., Yang, H.: GPU-Accelerated sparse LU factorization for circuit simulation with performance modeling. IEEE Trans. Parallel Distrib. Syst. 26(3), 786–795 (2015)CrossRef
104.
go back to reference He, K., Tan, S.X.D., Wang, H., Shi, G.: GPU-Accelerated parallel sparse LU factorization method for fast circuit analysis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(3), 1140–1150 (2016)CrossRef He, K., Tan, S.X.D., Wang, H., Shi, G.: GPU-Accelerated parallel sparse LU factorization method for fast circuit analysis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(3), 1140–1150 (2016)CrossRef
105.
go back to reference Kapre, N., DeHon, A.: Accelerating SPICE Model-Evaluation using FPGAs. In: 17th IEEE Symposium on Field Programmable Custom Computing Machines, 2009. FCCM ’09, pp. 37–44 (2009) Kapre, N., DeHon, A.: Accelerating SPICE Model-Evaluation using FPGAs. In: 17th IEEE Symposium on Field Programmable Custom Computing Machines, 2009. FCCM ’09, pp. 37–44 (2009)
106.
go back to reference Kapre, N.: Exploiting input parameter uncertainty for reducing datapath precision of SPICE device models. In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 189–197 (2013) Kapre, N.: Exploiting input parameter uncertainty for reducing datapath precision of SPICE device models. In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 189–197 (2013)
107.
go back to reference Martorell, H., Kapre, N.: FX-SCORE: a framework for fixed-point compilation of SPICE device models using Gappa++. In: Field-Programmable Custom Computing Machines (FCCM), pp. 77–84 (2012) Martorell, H., Kapre, N.: FX-SCORE: a framework for fixed-point compilation of SPICE device models using Gappa++. In: Field-Programmable Custom Computing Machines (FCCM), pp. 77–84 (2012)
108.
go back to reference Kapre, N., DeHon, A.: Performance comparison of Single-Precision SPICE Model-Evaluation on FPGA, GPU, Cell, and Multi-Core processors. In: 2009 International Conference on Field Programmable Logic and Applications, pp. 65–72 (2009) Kapre, N., DeHon, A.: Performance comparison of Single-Precision SPICE Model-Evaluation on FPGA, GPU, Cell, and Multi-Core processors. In: 2009 International Conference on Field Programmable Logic and Applications, pp. 65–72 (2009)
109.
go back to reference Wu, W., Shan, Y., Chen, X., Wang, Y., Yang, H.: FPGA accelerated parallel sparse matrix factorization for circuit simulations. In: Reconfigurable Computing: Architectures, Tools and Applications: 7th International Symposium, ARC 2011, pp. 302–315 (2011) Wu, W., Shan, Y., Chen, X., Wang, Y., Yang, H.: FPGA accelerated parallel sparse matrix factorization for circuit simulations. In: Reconfigurable Computing: Architectures, Tools and Applications: 7th International Symposium, ARC 2011, pp. 302–315 (2011)
110.
go back to reference Kapre, N., DeHon, A.: Parallelizing sparse matrix solve for SPICE circuit simulation using FPGAs. In: International Conference on Field-Programmable Technology, 2009. FPT 2009, pp. 190–198 (2009) Kapre, N., DeHon, A.: Parallelizing sparse matrix solve for SPICE circuit simulation using FPGAs. In: International Conference on Field-Programmable Technology, 2009. FPT 2009, pp. 190–198 (2009)
111.
go back to reference Wang, X., Jones, P.H., Zambreno, J.: A configurable architecture for sparse LU decomposition on matrices with arbitrary patterns. SIGARCH Comput. Archit. News 43(4), 76–81 (2016)CrossRef Wang, X., Jones, P.H., Zambreno, J.: A configurable architecture for sparse LU decomposition on matrices with arbitrary patterns. SIGARCH Comput. Archit. News 43(4), 76–81 (2016)CrossRef
112.
go back to reference Wu, G., Xie, X., Dou, Y., Sun, J., Wu, D., Li, Y.: Parallelizing sparse LU decomposition on FPGAs. In: 2012 International Conference on Field-Programmable Technology (FPT), pp. 352–359 (2012) Wu, G., Xie, X., Dou, Y., Sun, J., Wu, D., Li, Y.: Parallelizing sparse LU decomposition on FPGAs. In: 2012 International Conference on Field-Programmable Technology (FPT), pp. 352–359 (2012)
113.
go back to reference Johnson, J., Chagnon, T., Vachranukunkiet, P., Nagvajara, P., Nwankpa, C.: Sparse LU decomposition using FPGA. In: International Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA) (2008) Johnson, J., Chagnon, T., Vachranukunkiet, P., Nagvajara, P., Nwankpa, C.: Sparse LU decomposition using FPGA. In: International Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA) (2008)
114.
go back to reference Siddhartha, Kapre, N.: Heterogeneous dataflow architectures for FPGA-based sparse LU factorization. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4 (2014) Siddhartha, Kapre, N.: Heterogeneous dataflow architectures for FPGA-based sparse LU factorization. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4 (2014)
115.
go back to reference Siddhartha, Kapre, N.: Breaking sequential dependencies in FPGA-Based sparse LU factorization. In: 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 60–63 (2014) Siddhartha, Kapre, N.: Breaking sequential dependencies in FPGA-Based sparse LU factorization. In: 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 60–63 (2014)
116.
go back to reference Kapre, N., DeHon, A.: VLIW-SCORE: beyond C for sequential control of SPICE FPGA acceleration. In: 2011 International Conference on Field-Programmable Technology (FPT), pp. 1–9 (2011) Kapre, N., DeHon, A.: VLIW-SCORE: beyond C for sequential control of SPICE FPGA acceleration. In: 2011 International Conference on Field-Programmable Technology (FPT), pp. 1–9 (2011)
117.
go back to reference Kapre, N., DeHon, A.: SPICE2: spatial processors interconnected for concurrent execution for accelerating the SPICE circuit simulator using an FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(1), 9–22 (2012)CrossRef Kapre, N., DeHon, A.: SPICE2: spatial processors interconnected for concurrent execution for accelerating the SPICE circuit simulator using an FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(1), 9–22 (2012)CrossRef
118.
go back to reference Kapre, N.: SPICE2—A spatial parallel architecture for accelerating the SPICE circuit simulator. Ph.D. thesis, California Institute of Technology (2010) Kapre, N.: SPICE2—A spatial parallel architecture for accelerating the SPICE circuit simulator. Ph.D. thesis, California Institute of Technology (2010)
Metadata
Title
Related Work
Authors
Xiaoming Chen
Yu Wang
Huazhong Yang
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53429-9_2