Skip to main content
Top
Published in: Wireless Personal Communications 4/2018

26-09-2018

RETRACTED ARTICLE: Reliable Packet Delivery in Wireless Body Area Networks Using TCDMA Algorithm for e-Health Monitoring system

Authors: K. Suriyakrishnaan, D. Sridharan

Published in: Wireless Personal Communications | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent advancements in wireless technologies enabled healthcare sector to deliver a wide range of efficient e-Health services through Wireless Body Area Network (WBAN). A WBAN monitors the physiological signals and send corresponding data through wireless transmission. Reliable transmission of data assumes more importance in the case of WBAN. A decision-making algorithm is mandatory for selecting critical data for reliable packet delivery to reduce the chance of casualty. This paper proposes a new algorithm called Time Criticality based Decision Making Algorithm for reliable and preferential transmission of critical data. To achieve this decision making, a lower and upper threshold limit is set for each body parameter. Any data outside the interval specified by these thresholds are considered abnormal and transmitted by the coordinator. Proposed work shows a better performance in terms of Packet Delivery Ratio, throughput and normal energy utilization than Priority based Allocation of Time Slots and other time division based techniques. These Healthcare services enable to monitor patients not only in hospitals and medical center but also from remote locations without affecting the patient’s usual activities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRef Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRef
2.
go back to reference Misra, S., & Sarkar, S. (2015). Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective. IEEE Journal of Biomedical and Health Informatics, 19(2), 541–548.CrossRef Misra, S., & Sarkar, S. (2015). Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective. IEEE Journal of Biomedical and Health Informatics, 19(2), 541–548.CrossRef
3.
go back to reference Cheng, X., Li, Y., Ai, B., Yin, X., & Wang, Q. (2015). Device-to-device channel measurements and models: A survey. IET Communications, 9(3), 312–325.CrossRef Cheng, X., Li, Y., Ai, B., Yin, X., & Wang, Q. (2015). Device-to-device channel measurements and models: A survey. IET Communications, 9(3), 312–325.CrossRef
4.
go back to reference Dai, Z., Liu, J., & Wang, C. (2015). QoS based device to device communication schemes in heterogeneous wireless networks. IET Communications, 9(3), 335–341.CrossRef Dai, Z., Liu, J., & Wang, C. (2015). QoS based device to device communication schemes in heterogeneous wireless networks. IET Communications, 9(3), 335–341.CrossRef
5.
go back to reference Misra, S., Moulik, S., & Chao, H.-C. (2015). A cooperative bargaining solution for priority-based data-rate tuning in a wireless body area network. IEEE Trans Wirel Commun, 14(5), 2769–2777.CrossRef Misra, S., Moulik, S., & Chao, H.-C. (2015). A cooperative bargaining solution for priority-based data-rate tuning in a wireless body area network. IEEE Trans Wirel Commun, 14(5), 2769–2777.CrossRef
6.
go back to reference Caldeira, J. M., Rodrigues, J. J., & Lorenz, P. (2012). Toward ubiquitous mobility solutions for body sensor networks on healthcare. IEEE Communications Magazine, 50(5), 108–115.CrossRef Caldeira, J. M., Rodrigues, J. J., & Lorenz, P. (2012). Toward ubiquitous mobility solutions for body sensor networks on healthcare. IEEE Communications Magazine, 50(5), 108–115.CrossRef
7.
go back to reference Ivanov, S., Foley, C., Balasubramaniam, S., & Botvich, D. (2012). Virtual groups for patient WBAN monitoring in medical environments. IEEE Transactions on Biomedical Engineering, 59(11), 3238–3246.CrossRef Ivanov, S., Foley, C., Balasubramaniam, S., & Botvich, D. (2012). Virtual groups for patient WBAN monitoring in medical environments. IEEE Transactions on Biomedical Engineering, 59(11), 3238–3246.CrossRef
8.
go back to reference Zhang, Y., Zhang, F., Shakhsheer, Y., Silver, J. D., Klinefelter, A., Nagaraju, M., et al. (2013). A batteryless 19 μW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213.CrossRef Zhang, Y., Zhang, F., Shakhsheer, Y., Silver, J. D., Klinefelter, A., Nagaraju, M., et al. (2013). A batteryless 19 μW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213.CrossRef
9.
go back to reference Sjoland, H., Anderson, J. B., Bryant, C., Chandra, R., Edfors, O., Johansson, A. J., et al. (2012). A receiver architecture for devices in wireless body area networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 82–95.CrossRef Sjoland, H., Anderson, J. B., Bryant, C., Chandra, R., Edfors, O., Johansson, A. J., et al. (2012). A receiver architecture for devices in wireless body area networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 82–95.CrossRef
10.
go back to reference Reusens, E., Joseph, W., Latré, B., Braem, B., Vermeeren, G., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13(6), 933–945.CrossRef Reusens, E., Joseph, W., Latré, B., Braem, B., Vermeeren, G., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13(6), 933–945.CrossRef
11.
go back to reference Wan, J., Zou, C., Ullah, S., Lai, C. F., Zhou, M., & Wang, X. (2013). Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Network, 27(5), 56–61.CrossRef Wan, J., Zou, C., Ullah, S., Lai, C. F., Zhou, M., & Wang, X. (2013). Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Network, 27(5), 56–61.CrossRef
12.
go back to reference Misra, S., Oommen, B. J., Yanamandra, S., & Obaidat, M. S. (2010). Random early detection for congestion avoidance in wired networks: A discretized pursuit learning-automata-like solution. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 40(1), 66–76.CrossRef Misra, S., Oommen, B. J., Yanamandra, S., & Obaidat, M. S. (2010). Random early detection for congestion avoidance in wired networks: A discretized pursuit learning-automata-like solution. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 40(1), 66–76.CrossRef
13.
go back to reference Dhurandher, S. K., Misra, S., Mittal, H., Agarwal, A., & Woungang, I. (2011). Using ant-based agents for congestion control in ad-hoc wireless sensor networks. Cluster Computing, 14(1), 41–53.CrossRef Dhurandher, S. K., Misra, S., Mittal, H., Agarwal, A., & Woungang, I. (2011). Using ant-based agents for congestion control in ad-hoc wireless sensor networks. Cluster Computing, 14(1), 41–53.CrossRef
14.
go back to reference Khan, R. A., Mohammadani, K. H., Soomro, A. A., et al. (2018). An energy efficient routing protocol for wireless body area sensor networks. Wirel Pers Commun, 99(4), 1443–1454.CrossRef Khan, R. A., Mohammadani, K. H., Soomro, A. A., et al. (2018). An energy efficient routing protocol for wireless body area sensor networks. Wirel Pers Commun, 99(4), 1443–1454.CrossRef
15.
go back to reference Fengou, M. A., Mantas, G., Lymberopoulos, D., Komninos, N., Fengos, S., & Lazarou, N. (2013). A new framework architecture for next generation e-health services. IEEE Journal of Biomedical and Health Informatics, 17(1), 9–18.CrossRef Fengou, M. A., Mantas, G., Lymberopoulos, D., Komninos, N., Fengos, S., & Lazarou, N. (2013). A new framework architecture for next generation e-health services. IEEE Journal of Biomedical and Health Informatics, 17(1), 9–18.CrossRef
16.
go back to reference Karim, L., Nasser, N., Taleb, T., & Alqallaf, A. (2012, June). An efficient priority packet scheduling algorithm for wireless sensor network. In Communications (ICC), 2012 IEEE International Conference on (pp. 334–338). IEEE. Karim, L., Nasser, N., Taleb, T., & Alqallaf, A. (2012, June). An efficient priority packet scheduling algorithm for wireless sensor network. In Communications (ICC), 2012 IEEE International Conference on (pp. 334–338). IEEE.
17.
go back to reference Kurup, D., Joseph, W., Vermeeren, G., & Martens, L. (2012). In-body path loss model for homogeneous human tissues. IEEE Transactions on Electromagnetic Compatibility, 54(3), 556–564.CrossRef Kurup, D., Joseph, W., Vermeeren, G., & Martens, L. (2012). In-body path loss model for homogeneous human tissues. IEEE Transactions on Electromagnetic Compatibility, 54(3), 556–564.CrossRef
18.
go back to reference Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.CrossRef Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.CrossRef
19.
go back to reference Omary, Z., Mtenzi, F., Wu, B., & O’Driscoll, C. (2011). Ubiquitous healthcare information system: Assessment of its impacts to patient’s information. International Journal for Information Security Research, 1(2), 71–77.CrossRef Omary, Z., Mtenzi, F., Wu, B., & O’Driscoll, C. (2011). Ubiquitous healthcare information system: Assessment of its impacts to patient’s information. International Journal for Information Security Research, 1(2), 71–77.CrossRef
Metadata
Title
RETRACTED ARTICLE: Reliable Packet Delivery in Wireless Body Area Networks Using TCDMA Algorithm for e-Health Monitoring system
Authors
K. Suriyakrishnaan
D. Sridharan
Publication date
26-09-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5998-5

Other articles of this Issue 4/2018

Wireless Personal Communications 4/2018 Go to the issue