Skip to main content
Top
Published in: Physics of Metals and Metallography 9/2021

01-09-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Reorientation of Hydrides in Unirradiated Clad Tubes Made of Alloy E110 under Conditions Simulating Long-Term Dry Storage of Spent Nuclear Fuel

Authors: R. A. Kurskii, D. V. Safonov, A. V. Rozhkov, O. O. Zabusov, A. S. Frolov, E. A. Kuleshova, E. V. Alekseeva, A. S. Bragin, E. A. Vasil’eva, A. B. Gaiduchenko, D. A. Mal’tsev, M. A. Skundin

Published in: Physics of Metals and Metallography | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reorientation of hydrides in the course of dry storage of spent nuclear fuel is a possible mechanism for the degradation of the properties of fuel claddings made of alloy E110 (Zr–1% Nb) based on spongy zirconium in VVER reactors. To determine the degree of reorientation of hydride precipitates in fuel claddings under conditions that simulate the conditions of dry storage, a series of tests have been performed for unirradiated samples with a hydrogen content of 100 and 200 wppm at various levels of circumferential stresses up to 100 MPa for 40 days. The orientation of hydride precipitates is determined using metallographic measurements. To assess the mechanical characteristics, the ring specimens have been tested for static uniaxial tension. The hydrides are analyzed using transmission electron microscopy and X-ray diffraction analysis. It is shown that test conditions lead to partial reorientation of hydride precipitates, which contributes, in turn, to a decrease in the plasticity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. A. Shmakov, B. A. Kalin, and E. A. Smirnov, Hydrogen in Zirconium Alloys (LAMBERT Academic Publishing, Saarbrucken, 2014). A. A. Shmakov, B. A. Kalin, and E. A. Smirnov, Hydrogen in Zirconium Alloys (LAMBERT Academic Publishing, Saarbrucken, 2014).
2.
go back to reference A. A. Shmakov, B. A. Kalin, and E. A. Smirnov, “On the possibility of hydride cracking of fuel element cladding in light water reactors,” Inzh. Fiz. 1, 60–62 (1999). A. A. Shmakov, B. A. Kalin, and E. A. Smirnov, “On the possibility of hydride cracking of fuel element cladding in light water reactors,” Inzh. Fiz. 1, 60–62 (1999).
3.
go back to reference A. T. Motta, L. Capolungo, L. Q. Chen, M. N. Cinbiz, M. R. Daymond, D. A. Koss, E. Lacroix, G. Pastore, P. C. A. Simon, M. R. Tonks, B. D. Wirth, and M. A. Zikry, “Hydrogen in zirconium alloys: a review,” J. Nucl. Mater. 518, 440–460 (2019).CrossRef A. T. Motta, L. Capolungo, L. Q. Chen, M. N. Cinbiz, M. R. Daymond, D. A. Koss, E. Lacroix, G. Pastore, P. C. A. Simon, M. R. Tonks, B. D. Wirth, and M. A. Zikry, “Hydrogen in zirconium alloys: a review,” J. Nucl. Mater. 518, 440–460 (2019).CrossRef
4.
go back to reference M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, and T. Takeda, “Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage,” J. ASTM Int. 5, No. 9, 651–673 (2008).CrossRef M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, and T. Takeda, “Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage,” J. ASTM Int. 5, No. 9, 651–673 (2008).CrossRef
5.
go back to reference J. M. Lee, H. A. Kim, D. H. Kook, and Y. S. Kim, “A study on the effects of hydrogen content and peak temperature on threshold stress for hydride reorientation in Zircaloy-4 cladding,” J. Nucl. Mater. 509, 285–294 (2018).CrossRef J. M. Lee, H. A. Kim, D. H. Kook, and Y. S. Kim, “A study on the effects of hydrogen content and peak temperature on threshold stress for hydride reorientation in Zircaloy-4 cladding,” J. Nucl. Mater. 509, 285–294 (2018).CrossRef
6.
go back to reference Q. Auzoux, P. Bouffioux, A. Machiels, S. Yagnik, B. Bourdiliau, C. Mallet, N. Mozzani, and K. Colas, “Hydride reorientation and its impact on ambient temperature mechanical properties of high burn-up irradiated and unirradiated recrystallized Zircaloy-2 nuclear fuel cladding with an inner liner,” J. Nucl. Mater. 494, 114–126 (2017).CrossRef Q. Auzoux, P. Bouffioux, A. Machiels, S. Yagnik, B. Bourdiliau, C. Mallet, N. Mozzani, and K. Colas, “Hydride reorientation and its impact on ambient temperature mechanical properties of high burn-up irradiated and unirradiated recrystallized Zircaloy-2 nuclear fuel cladding with an inner liner,” J. Nucl. Mater. 494, 114–126 (2017).CrossRef
7.
go back to reference H. J. Cha, J. J. Won, K. N. Jang, J. H. An, and K. T. Kim, “Tensile hoop stress-, hydrogen content- and cooling rate-dependent hydride reorientation behaviors of Zr alloy cladding tubes,” J. Nucl. Mater. 464, 53–60 (2015).CrossRef H. J. Cha, J. J. Won, K. N. Jang, J. H. An, and K. T. Kim, “Tensile hoop stress-, hydrogen content- and cooling rate-dependent hydride reorientation behaviors of Zr alloy cladding tubes,” J. Nucl. Mater. 464, 53–60 (2015).CrossRef
8.
go back to reference J. Desquines, D. Drouan, M. Billone, M. P. Puls, P. March, S. Fourgeaud, C. Getrey, V. Elbaz, and M. Philippe, “Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding,” J. Nucl. Mater. 453, Nos. 1–3, 131–150 (2014).CrossRef J. Desquines, D. Drouan, M. Billone, M. P. Puls, P. March, S. Fourgeaud, C. Getrey, V. Elbaz, and M. Philippe, “Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding,” J. Nucl. Mater. 453, Nos. 1–3, 131–150 (2014).CrossRef
9.
go back to reference WWER-440 Fuel Rod Experiments Under Simulated Dry Storage Conditions (International Atomic Energy Agency, Vienna, 2004), IAEA-TECDOC-1385. WWER-440 Fuel Rod Experiments Under Simulated Dry Storage Conditions (International Atomic Energy Agency, Vienna, 2004), IAEA-TECDOC-1385.
10.
go back to reference T. P. Chernyaeva, V. M. Gritsina, V. S. Krasnorutskii, A. P. Redkina, I. A. Petelguzov, and E. A. Slabospitskaya, “Effects of Zr-1%Nb fuel rod cladding temperature and stressed conditions on hydridere orientation,” Probl. At. Sci. Technol. 113, No. 1, 189–202 (2018). T. P. Chernyaeva, V. M. Gritsina, V. S. Krasnorutskii, A. P. Redkina, I. A. Petelguzov, and E. A. Slabospitskaya, “Effects of Zr-1%Nb fuel rod cladding temperature and stressed conditions on hydridere orientation,” Probl. At. Sci. Technol. 113, No. 1, 189–202 (2018).
11.
go back to reference G. V. Kulakov, A. V. Vatulin, Yu. V. Konovalov, A. A. Kosaurov, M. M. Peregud, E. A. Korotchenko, V. Yu. Shishin, and A. A. Shel’dyakov, “Analysis of the effect of the stress-strain state of irradiated zirconium-alloy fuel-element cladding on hydride orientation,” At. Energy 122, No. 2, 87–92 (2017).CrossRef G. V. Kulakov, A. V. Vatulin, Yu. V. Konovalov, A. A. Kosaurov, M. M. Peregud, E. A. Korotchenko, V. Yu. Shishin, and A. A. Shel’dyakov, “Analysis of the effect of the stress-strain state of irradiated zirconium-alloy fuel-element cladding on hydride orientation,” At. Energy 122, No. 2, 87–92 (2017).CrossRef
12.
go back to reference S. J. Min, J. J. Won, and K. T. Kim, “Terminal cool-down temperature-dependent hydride reorientations in Zr–Nb alloy claddings under dry storage conditions,” J. Nucl. Mater. 448, Nos. 1–3, 172–183 (2014).CrossRef S. J. Min, J. J. Won, and K. T. Kim, “Terminal cool-down temperature-dependent hydride reorientations in Zr–Nb alloy claddings under dry storage conditions,” J. Nucl. Mater. 448, Nos. 1–3, 172–183 (2014).CrossRef
13.
go back to reference D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009).CrossRef D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009).CrossRef
14.
go back to reference H. Kurata, S. Isoda, and T. Kobayashi, “Chemical mapping by energy-filtering transmission electron microscopy,” J. Electron Microsc. 45, No. 4, 317–320 (1996).CrossRef H. Kurata, S. Isoda, and T. Kobayashi, “Chemical mapping by energy-filtering transmission electron microscopy,” J. Electron Microsc. 45, No. 4, 317–320 (1996).CrossRef
15.
go back to reference http://www.icdd.com/translation/rus/pdf2.htm. http://www.icdd.com/translation/rus/pdf2.htm.
16.
go back to reference A. S. Frolov, E. V. Krikun, K. E. Prikhodko, and E. A. Kuleshova, “Development of the DIFFRACALC program for analyzing the phase composition of alloys,” Crystallogr. Rep. 62, No. 5, 809–815 (2017).CrossRef A. S. Frolov, E. V. Krikun, K. E. Prikhodko, and E. A. Kuleshova, “Development of the DIFFRACALC program for analyzing the phase composition of alloys,” Crystallogr. Rep. 62, No. 5, 809–815 (2017).CrossRef
17.
go back to reference L. Yegorova, V. Asmolov, G. Abyshov, V. Molofeev, A. Avvakumov, E. Kaplar, K. Lioutov, A. Shestopalov, A. Bortash, L. Maiorov, K. Mikitiouk, V. Polvanov, V. Smirnov, A. Goryachev, V. Prokhorov, V. Pakhnitz, and A. Vurim, “Database on the behavior of high burnup fuel rods with Zr–1% Nb cladding and UO2 fuel (VVER type) under reactivity accident conditions,” Description of Test Procedures and Analytical Methods. NUREG/IA-0156 2 (1999). L. Yegorova, V. Asmolov, G. Abyshov, V. Molofeev, A. Avvakumov, E. Kaplar, K. Lioutov, A. Shestopalov, A. Bortash, L. Maiorov, K. Mikitiouk, V. Polvanov, V. Smirnov, A. Goryachev, V. Prokhorov, V. Pakhnitz, and A. Vurim, “Database on the behavior of high burnup fuel rods with Zr–1% Nb cladding and UO2 fuel (VVER type) under reactivity accident conditions,” Description of Test Procedures and Analytical Methods. NUREG/IA-0156 2 (1999).
18.
go back to reference D. Khatamian and V. C. Ling, “Hydrogen solubility limits in α- and β-zirconium,” J. Alloys Compd. 253–254, 162–166 (1997).CrossRef D. Khatamian and V. C. Ling, “Hydrogen solubility limits in α- and β-zirconium,” J. Alloys Compd. 253254, 162–166 (1997).CrossRef
19.
go back to reference D. Khatamian, “Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry,” J. Alloys Compd. 293, 893–899 (1999).CrossRef D. Khatamian, “Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry,” J. Alloys Compd. 293, 893–899 (1999).CrossRef
20.
go back to reference Z. Zhao, M. Blat-Yrieix, J. P. Morniroli, A. Legris, L. Thuinet, Y. Kihn, A. Ambard, and L. Legras, “Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation,” J. ASTM Int. 5, No. 3, 29–50 (2008). Z. Zhao, M. Blat-Yrieix, J. P. Morniroli, A. Legris, L. Thuinet, Y. Kihn, A. Ambard, and L. Legras, “Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation,” J. ASTM Int. 5, No. 3, 29–50 (2008).
21.
go back to reference R. S. Daum, Y. S. Chu, and A. T. Motta, “Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction,” J. Nucl. Mater. 392, 453–463 (2009).CrossRef R. S. Daum, Y. S. Chu, and A. T. Motta, “Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction,” J. Nucl. Mater. 392, 453–463 (2009).CrossRef
22.
go back to reference Z. Zhao, J. P. Morniroli, A. Legris, A. Ambard, Y. Kihn, L. Legras, and M. Blat-Yrieix, “Identification and characterization of a new zirconium hydride,” J. Microsc. 232, No. 3, 410–421 (2008).CrossRef Z. Zhao, J. P. Morniroli, A. Legris, A. Ambard, Y. Kihn, L. Legras, and M. Blat-Yrieix, “Identification and characterization of a new zirconium hydride,” J. Microsc. 232, No. 3, 410–421 (2008).CrossRef
23.
go back to reference S. S. Sidhu, MurthyN. S. Satya, F. P. Campos, and D. Zauberis, Neutron and X-ray Diffraction Studies of Nonstoichiometric Metal Hydrides. ANL-FGF-332 (1962). S. S. Sidhu, MurthyN. S. Satya, F. P. Campos, and D. Zauberis, Neutron and X-ray Diffraction Studies of Nonstoichiometric Metal Hydrides. ANL-FGF-332 (1962).
24.
go back to reference R. C. Jr. Bowman, B. D. Craft, J. S. Cantrell, and E. L. Venturini, “Effects of thermal treatments on the lattice properties and electronic structure of ZrHx,” Phys. Rev. B 31, 5604–5615 (1985).CrossRef R. C. Jr. Bowman, B. D. Craft, J. S. Cantrell, and E. L. Venturini, “Effects of thermal treatments on the lattice properties and electronic structure of ZrHx,” Phys. Rev. B 31, 5604–5615 (1985).CrossRef
25.
go back to reference O. T. Woo and G. J. C. Carpenter, “EELS characterization of zirconium hydrides,” Microsc. Microanal. Microstruct. 3, 35–44 (1992).CrossRef O. T. Woo and G. J. C. Carpenter, “EELS characterization of zirconium hydrides,” Microsc. Microanal. Microstruct. 3, 35–44 (1992).CrossRef
26.
go back to reference J. J. Kearns and C. R. Woods, “Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate,” J. Nucl. Mater. 20, No. 3, 241–261 (1966).CrossRef J. J. Kearns and C. R. Woods, “Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate,” J. Nucl. Mater. 20, No. 3, 241–261 (1966).CrossRef
27.
go back to reference S. Alyokhina, “Thermal analysis of certain accident conditions of dry spent nuclear fuel storage,” Nucl. Eng. Technol. 50, No. 5, 717–723 (2018).CrossRef S. Alyokhina, “Thermal analysis of certain accident conditions of dry spent nuclear fuel storage,” Nucl. Eng. Technol. 50, No. 5, 717–723 (2018).CrossRef
28.
go back to reference M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R. B. Adamson, L. Hallstadius, P. E. Cantonwine, and E. V. Mader, “Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations,” J. Nucl. Mater. 460, 82–96 (2015).CrossRef M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R. B. Adamson, L. Hallstadius, P. E. Cantonwine, and E. V. Mader, “Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations,” J. Nucl. Mater. 460, 82–96 (2015).CrossRef
29.
go back to reference F. Pazdera and J. Belac, “Safety criteria and their comparison between WWER and PWR,” 5th Int. Conf. on WWER Fuel Peformance, Modelling and Experimental Support (Albena, 2003). F. Pazdera and J. Belac, “Safety criteria and their comparison between WWER and PWR,” 5th Int. Conf. on WWER Fuel Peformance, Modelling and Experimental Support (Albena, 2003).
Metadata
Title
Reorientation of Hydrides in Unirradiated Clad Tubes Made of Alloy E110 under Conditions Simulating Long-Term Dry Storage of Spent Nuclear Fuel
Authors
R. A. Kurskii
D. V. Safonov
A. V. Rozhkov
O. O. Zabusov
A. S. Frolov
E. A. Kuleshova
E. V. Alekseeva
A. S. Bragin
E. A. Vasil’eva
A. B. Gaiduchenko
D. A. Mal’tsev
M. A. Skundin
Publication date
01-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 9/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21090076

Other articles of this Issue 9/2021

Physics of Metals and Metallography 9/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

NMR Study of Cobalt-Containing Nanowires of Various Types