Skip to main content
Top
Published in: Clean Technologies and Environmental Policy 8/2014

01-12-2014 | Original Paper

Repowering of existing AL-Hartha gas-fuelled conventional steam power plant with molten salt cavity tubular solar central receiver

Authors: Mahmood S. Jamel, A. Abd Rahman, A. H. Shamsuddin

Published in: Clean Technologies and Environmental Policy | Issue 8/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper introduces a new method to repower the existing equipment of the AL-Hartha steam plant located in Basra, Iraq, using a molten salt cavity tubular solar central receiver (SCR). Cycle Tempo is used to simulate the existing natural gas-fuelled conventional steam power cycle with consideration of the heat and pressure losses. The heliostat field and the central receiver subsystems are coded using MATLAB. The model couples the heat balance with the temperature computation of the receiver walls for calculation and analysis of the thermal losses. The proposed modified codes are capable of calculating heat losses, evaluating the integrated power plant and satisfying a wide range of SCRs. The results are verified against plant data and previous works in the literature and good agreement is obtained. The results show the potential of using a molten salt cavity tubular SCR for low-range temperature feedwater preheating, as well as the optimum scheme for the integration of the existing plant with an SCR. It is observed that the maximum improvement for the existing AL-Hartha steam plant and the integrated molten salt cavity tubular SCR is obtained by substituting the bleed steam in all the high-pressure feedwater heaters. For this scheme, the obtained receiver energy efficiency reaches up to 94.1 % and the maximum reduction in instantaneous gas fuel consumption is about 10.1 % with a solar-electricity improvement of about 21.6 % over the design case.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Au SF, Hemmes K, Woudstra N (2003) Flowsheet calculation of a combined heat and power fuel cell plant with a conceptual molten carbonate fuel cell with separate CO2 supply. J Power Sources 122:19–27CrossRef Au SF, Hemmes K, Woudstra N (2003) Flowsheet calculation of a combined heat and power fuel cell plant with a conceptual molten carbonate fuel cell with separate CO2 supply. J Power Sources 122:19–27CrossRef
go back to reference Buck R, Barth C, Eck M, Steinmann W-D (2006) Dual-receiver concept for solar towers. Sol Energy 80:1249–1254CrossRef Buck R, Barth C, Eck M, Steinmann W-D (2006) Dual-receiver concept for solar towers. Sol Energy 80:1249–1254CrossRef
go back to reference Camporeale SM, Fortunato B, Saponaro A (2011) Repowering of a rankine cycle power plant by means of concentrating solar collectors. ASME Conf Proc 2011:163–170 Camporeale SM, Fortunato B, Saponaro A (2011) Repowering of a rankine cycle power plant by means of concentrating solar collectors. ASME Conf Proc 2011:163–170
go back to reference Chong KK, Tan MH (2011) Range of motion study for two different sun-tracking methods in the application of heliostat field. Sol Energy 85:1837–1850CrossRef Chong KK, Tan MH (2011) Range of motion study for two different sun-tracking methods in the application of heliostat field. Sol Energy 85:1837–1850CrossRef
go back to reference Frank Kreith DYG (2007) Energy efficiency and Renew Energy. Taylor&Francis Group, New YorkCrossRef Frank Kreith DYG (2007) Energy efficiency and Renew Energy. Taylor&Francis Group, New YorkCrossRef
go back to reference Griffith LV, Brandt H (1984) Solar–fossil HYBRID system analysis: performance and economics. Sol Energy 33:265–276CrossRef Griffith LV, Brandt H (1984) Solar–fossil HYBRID system analysis: performance and economics. Sol Energy 33:265–276CrossRef
go back to reference Gupta MK, Kaushik SC (2009) Exergetic utilization of solar energy for feed water preheating in a conventional thermal power plant. Int J Energy Res 33:593–604CrossRef Gupta MK, Kaushik SC (2009) Exergetic utilization of solar energy for feed water preheating in a conventional thermal power plant. Int J Energy Res 33:593–604CrossRef
go back to reference Gupta MK, Kaushik SC (2010) Exergy analysis and investigation for various feed water heaters of direct steam generation solar–thermal power plant. Renew Energy 35:1228–1235CrossRef Gupta MK, Kaushik SC (2010) Exergy analysis and investigation for various feed water heaters of direct steam generation solar–thermal power plant. Renew Energy 35:1228–1235CrossRef
go back to reference Holl RJ (1989) Molten salt solar-electric experiment, vols 1, 2. Electric Power Research Institute, Palo Alto Holl RJ (1989) Molten salt solar-electric experiment, vols 1, 2. Electric Power Research Institute, Palo Alto
go back to reference Hu E, Yang Y, Nishimura A, Yilmaz F, Kouzani A (2010) Solar thermal aided power generation. Appl Energy 87:2881–2885CrossRef Hu E, Yang Y, Nishimura A, Yilmaz F, Kouzani A (2010) Solar thermal aided power generation. Appl Energy 87:2881–2885CrossRef
go back to reference Jamel MS, Abd Rahman A, Shamsuddin AH (2013) Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev 20:71–81CrossRef Jamel MS, Abd Rahman A, Shamsuddin AH (2013) Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev 20:71–81CrossRef
go back to reference Kribus A, Ries H, Spirkl W (1996) Inherent limitations of volumetric solar receivers. J Sol Energy Eng 118:151–155CrossRef Kribus A, Ries H, Spirkl W (1996) Inherent limitations of volumetric solar receivers. J Sol Energy Eng 118:151–155CrossRef
go back to reference Li X, Kong W, Wang Z, Chang C, Bai F (2010) Thermal model and thermodynamic performance of molten salt cavity receiver. Renew Energy 35:981–988CrossRef Li X, Kong W, Wang Z, Chang C, Bai F (2010) Thermal model and thermodynamic performance of molten salt cavity receiver. Renew Energy 35:981–988CrossRef
go back to reference Mitsubishi Heavy Industries Ltd. (1977a) Manual for the AL-Hartha PowerStation, “Boiler and Auxiliaries”, vol 1. Mitsubishi Heavy Industries Ltd., Japan Mitsubishi Heavy Industries Ltd. (1977a) Manual for the AL-Hartha PowerStation, “Boiler and Auxiliaries”, vol 1. Mitsubishi Heavy Industries Ltd., Japan
go back to reference Mitsubishi Heavy Industries Ltd. (1977b) Manual for the AL-Hartha PowerStation, “Steam Turbine and Auxiliaries”, vol 2. Mitsubishi Heavy Industries Ltd., Japan Mitsubishi Heavy Industries Ltd. (1977b) Manual for the AL-Hartha PowerStation, “Steam Turbine and Auxiliaries”, vol 2. Mitsubishi Heavy Industries Ltd., Japan
go back to reference Pacheco JE, Bradshaw RW, Dawson DB, De la Rosa W, Gilbert R, Goods SH (2002) Final test and evaluation results from the Solar Two project. Solar Thermal Technology, Sandia National Laboratories, Livermore Pacheco JE, Bradshaw RW, Dawson DB, De la Rosa W, Gilbert R, Goods SH (2002) Final test and evaluation results from the Solar Two project. Solar Thermal Technology, Sandia National Laboratories, Livermore
go back to reference Pai BR (1991) Augmentation of thermal power stations with solar energy. Sadhana 16:59–74CrossRef Pai BR (1991) Augmentation of thermal power stations with solar energy. Sadhana 16:59–74CrossRef
go back to reference Popov D (2011) An option for solar thermal repowering of fossil fuel fired power plants. Sol Energy 85:344–349CrossRef Popov D (2011) An option for solar thermal repowering of fossil fuel fired power plants. Sol Energy 85:344–349CrossRef
go back to reference Reddy V, Kaushik S, Tyagi S (2012) Exergetic analysis of solar concentrator aided coal fired super critical thermal power plant (SACSCTPT). Clean Technol Environ Policy 2012:1–13 Reddy V, Kaushik S, Tyagi S (2012) Exergetic analysis of solar concentrator aided coal fired super critical thermal power plant (SACSCTPT). Clean Technol Environ Policy 2012:1–13
go back to reference Reid RC, Sherwood TK (1966) The properties of gases and liquids. McGraw-Hill, New York Reid RC, Sherwood TK (1966) The properties of gases and liquids. McGraw-Hill, New York
go back to reference Schmitz M, Schwarzbözl P, Buck R, Pitz-Paal R (2006) Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators. Sol Energy 80:111–120CrossRef Schmitz M, Schwarzbözl P, Buck R, Pitz-Paal R (2006) Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators. Sol Energy 80:111–120CrossRef
go back to reference Suresh MVJJ, Reddy KS, Kolar AK (2010) 4-E (energy, exergy, environment, and economic) analysis of solar thermal aided coal-fired power plants. Energy Sustain Dev 14:267–279CrossRef Suresh MVJJ, Reddy KS, Kolar AK (2010) 4-E (energy, exergy, environment, and economic) analysis of solar thermal aided coal-fired power plants. Energy Sustain Dev 14:267–279CrossRef
go back to reference Xiuyan W, Mengjiao W, Xiyan G (2011) Thermal performance analysis of solar steam aided coal-fired power generation. In: 2011 International Conference on Materials for Renew Energy & Environment (ICMREE), pp 209–12 Xiuyan W, Mengjiao W, Xiyan G (2011) Thermal performance analysis of solar steam aided coal-fired power generation. In: 2011 International Conference on Materials for Renew Energy & Environment (ICMREE), pp 209–12
go back to reference Xu C, Wang Z, Li X, Sun F (2011) Energy and exergy analysis of solar power tower plants. Appl Therm Eng 31:3904–3913CrossRef Xu C, Wang Z, Li X, Sun F (2011) Energy and exergy analysis of solar power tower plants. Appl Therm Eng 31:3904–3913CrossRef
go back to reference Yan Q, Yang Y, Nishimura A, Kouzani A, Hu E (2010) Multi-point and multi-level solar integration into a conventional coal-fired power plant. Energy Fuels 24:3733–3738CrossRef Yan Q, Yang Y, Nishimura A, Kouzani A, Hu E (2010) Multi-point and multi-level solar integration into a conventional coal-fired power plant. Energy Fuels 24:3733–3738CrossRef
go back to reference Yan Q, Hu E, Yang Y, Zhai R (2011) Evaluation of solar aided thermal power generation with various power plants. Int J Energy Res 35:909–922CrossRef Yan Q, Hu E, Yang Y, Zhai R (2011) Evaluation of solar aided thermal power generation with various power plants. Int J Energy Res 35:909–922CrossRef
go back to reference Yang Y, Yan Q, Zhai R, Kouzani A, Hu E (2011) An efficient way to use medium-or-low temperature solar heat for power generation—integration into conventional power plant. Appl Therm Eng 31:157–162CrossRef Yang Y, Yan Q, Zhai R, Kouzani A, Hu E (2011) An efficient way to use medium-or-low temperature solar heat for power generation—integration into conventional power plant. Appl Therm Eng 31:157–162CrossRef
go back to reference Yao Z, Wang Z, Lu Z, Wei X (2009) Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China. Renew Energy 34:2437–2446CrossRef Yao Z, Wang Z, Lu Z, Wei X (2009) Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China. Renew Energy 34:2437–2446CrossRef
go back to reference Ying Y, Hu EJ (1999) Thermodynamic advantages of using solar energy in the regenerative Rankine power plant. Appl Therm Eng 19:1173–1180CrossRef Ying Y, Hu EJ (1999) Thermodynamic advantages of using solar energy in the regenerative Rankine power plant. Appl Therm Eng 19:1173–1180CrossRef
go back to reference Zavoico AB (2001) Solar power tower design basis document. Sandia National Laboratories, LivermoreCrossRef Zavoico AB (2001) Solar power tower design basis document. Sandia National Laboratories, LivermoreCrossRef
go back to reference Zhai R, Zhu Y, Yang Y, Tan K, Hu E (2013) Exergetic and parametric study of a solar aided coal-fired power plant. Entropy 15:1014–1034CrossRef Zhai R, Zhu Y, Yang Y, Tan K, Hu E (2013) Exergetic and parametric study of a solar aided coal-fired power plant. Entropy 15:1014–1034CrossRef
go back to reference Zoschak RJ, Wu SF (1975) Studies of the direct input of solar energy to a fossil-fueled central station steam power plant. Sol Energy 17:297–305CrossRef Zoschak RJ, Wu SF (1975) Studies of the direct input of solar energy to a fossil-fueled central station steam power plant. Sol Energy 17:297–305CrossRef
Metadata
Title
Repowering of existing AL-Hartha gas-fuelled conventional steam power plant with molten salt cavity tubular solar central receiver
Authors
Mahmood S. Jamel
A. Abd Rahman
A. H. Shamsuddin
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Clean Technologies and Environmental Policy / Issue 8/2014
Print ISSN: 1618-954X
Electronic ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-014-0740-9

Other articles of this Issue 8/2014

Clean Technologies and Environmental Policy 8/2014 Go to the issue